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SUMMARY

The psychiatric disorders autism and schizophrenia
have a strong genetic component, and copy number
variants (CNVs) are firmly implicated. Recurrent
deletions and duplications of chromosome 16p11.2
confer a high risk for both diseases, but the pathways
disrupted by this CNV are poorly defined. Here we
investigate the dynamics of the 16p11.2 network by
integrating physical interactions of 16p11.2 proteins
with spatiotemporal gene expression from the devel-
oping human brain. We observe profound changes in
protein interaction networks throughout different
stages of brain development and/or in different brain
regions. We identify the late mid-fetal period of
cortical development as most critical for establishing
the connectivity of 16p11.2 proteins with their co-ex-
pressed partners. Furthermore, our results suggest
that the regulation of the KCTD13-Cul3-RhoA path-
way in layer 4 of the inner cortical plate is crucial
for controlling brain size and connectivity and that
its dysregulation by de novo mutations may be a
potential determinant of 16p11.2 CNV deletion and
duplication phenotypes.

INTRODUCTION

Accumulating evidence suggests that rare copy number variants

(CNVs) are an important risk factor for multiple psychiatric disor-

ders (Malhotra and Sebat, 2012), including autism spectrum dis-

orders (ASDs) (Levy et al., 2011; Marshall et al., 2008; Pinto et al.,

2010; Sanders et al., 2011; Sebat et al., 2007), schizophrenia

(SCZ) (Consortium, 2008; Kirov et al., 2009; Stefansson et al.,

2008; Walsh et al., 2008), bipolar disorder (BD) (Malhotra et al.,

2011), developmental delay (DD) (Cooper et al., 2011), attention

deficit hyperactivity disorder (ADHD) (Lionel et al., 2011), and in-
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tellectual disability (ID) (Girirajan et al., 2012; Merikangas et al.,

2009). One of the most frequent CNVs involved in neurodeve-

lopmental diseases is the 16p11.2 CNV locus encompassing

�600 kb (chr16:29.5-30.2Mb). The 16p11.2 CNV has been impli-

cated in multiple psychiatric phenotypes, with the deletions

associated with ASD and ID, whereas the duplications have

been associated with ASD, SCZ, BD, and ID (Bijlsma et al.,

2009; Malhotra and Sebat, 2012; Marshall et al., 2008; McCarthy

et al., 2009;Weiss et al., 2008).Moreover, a reciprocal dosage ef-

fect of 16p11.2 on head size has been reported, with macroce-

phaly observed in deletion carriers and microcephaly observed

in duplication carriers (McCarthy et al., 2009). These human phe-

notypes have been recapitulated in zebrafish by either increasing

or suppressing the expression of KCTD13, respectively (Golzio

et al., 2012). The mouse models of 16p11.2 CNVs have

dosage-dependent changes in gene expression, brain architec-

ture, behavior, and viability (Horev et al., 2011; Portmann et al.,

2014). In humans, transcriptome profiling from lymphoblasts of

16p11.2 CNV carriers identified expression dysregulation of

many genes located outside of the 16p11.2 locus, in addition to

the changes of genes’ dosage within the locus (Luo et al., 2012).

Despite the progress in linking 16p11.2 genetic changes with

the phenotypic abnormalities in patients and model organisms,

the specific brain regions, developmental periods, networks,

and pathways impacted by this CNV remain unknown. To

address these questions, we constructed dynamic spatiotem-

poral networks of 16p11.2 genes by integrating data from the

brain developmental transcriptome (Kang et al., 2011; Miller

et al., 2014) with physical interactions of 16p11.2 proteins

(Chatr-Aryamontri et al., 2013; Corominas et al., 2014; Rolland

et al., 2014).

Until now, most protein-protein interaction (PPI) studies of

CNVs in psychiatric disorders have been focused on analyzing

static topological network properties such as connectivity, mod-

ules, and clusters (Gilman et al., 2011; Noh et al., 2013; Pinto

et al., 2010). However, cells are highly dynamic entities, and pro-

tein interactions could be profoundly influenced by spatial and

temporal availability of the interacting gene products, as demon-

strated previously for yeast grown under varying experimental
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conditions (de Lichtenberg et al., 2005; Luscombe et al., 2004).

Recent studies that analyzed genes with de novo mutations in

ASD (Parikshak et al., 2013; Willsey et al., 2013) and SCZ (Gulsu-

ner et al., 2013) have integrated transcriptome data to capture

dynamic information at different brain spatiotemporal intervals.

Here we incorporated physical protein-protein interactions into

spatiotemporal transcriptome analysis of 16p11.2 genes. This

novel approach identifies profound changes in co-expressed

and physically interacting protein pairs that are not observable

from the static PPI networks. We demonstrate that 16p11.2 pro-

teins interact with their corresponding partners primarily in four

specific spatiotemporal intervals and that the interaction patterns

change across these intervals. In particular, we identify the late

mid-fetal period of cortical development as crucial for establish-

ing connectivity of 16p11.2 proteins with their partners. Our re-

sults implicate the physical KCTD13-Cul3 interaction within the

inner cortical plate layer 4 in regulating RhoA levels and, possibly,

in influencing brain size. Finally, we confirm experimentally that

nonsense mutations in CUL3 identified in ASD patients weaken

or even disrupt the physical interaction between the KCTD13

and Cul3 proteins. Our study places 16p11.2 interactions into a

spatiotemporal context and identifies dynamic subnetworks of

interacting proteins during human brain development.

RESULTS

High-Risk CNVs Have Distinct Spatiotemporal
Signatures
The ability of two proteins to interact depends greatly on their

spatial and temporal availability. Generally, an interacting protein

pair can form only if two proteins are present in the same cellular

compartment at the same time in sufficient quantities. Indeed, a

strong correlation between co-expression and protein interac-

tions has been observed (Ge et al., 2001; Grigoriev, 2001), espe-

cially for the subunits of permanent protein complexes that are

maintained across various cellular conditions (Jansen et al.,

2002). Integration of gene expression with protein interactions

could, therefore, identify themost plausible spatiotemporal inter-

vals at which a biologically relevant interaction between two pro-

teins may occur. Data integration from heterogeneous sources

has been used previously to gain biological insights into various

cellular processes and human diseases (Pujana et al., 2007; Se-

gal et al., 2003).

To understand how genes from different CNVs conferring a

high risk for psychiatric disorders (Table S1) interact in the

context of brain development, we constructed dynamic spatio-

temporal networks by integrating physical protein-protein inter-

actions with gene co-expression (Figure 1; Table S2; Table S3).

We investigated whether these networks are enriched in co-ex-

pressed and physically interacting protein pairs across four brain

regions and eight developmental periods, resulting in 32 spatio-

temporal intervals (Experimental Procedures; Figure 1). We

observed no significant differences between the fractions of

co-expressed interacting protein pairs in the combined CNV

network (1,918 pairs involving 104 CNV genes from seven

high-risk CNVs) versus background control of all human brain-

expressed interacting proteins (HIBE) (Experimental Procedures;

Figure 2). Similarly, we did not observe a common signature in a
simulated CNV dataset of 10,000 randomly selected genomic re-

gions with the same number of genes and interactions as the

high-risk CNVs (Figure 2).

The separate analysis of each CNV demonstrated that some

CNVs are characterized by distinct signatures of enriched co-ex-

pressed interacting protein pairs that are non-randomly distrib-

uted across spatiotemporal intervals (Figure 2). For example,

7q11.23 CNV is enriched in such pairs primarily during the early

fetal and young adult periods in the R3 brain region, composed of

the amygdala, hippocampus, and striatum, whereas 22q11.21

CNV has the strongest signal during childhood in all brain re-

gions. Likewise, the 16p11.2 co-expressed interacting protein

pairs are strongly and moderately enriched during the late mid-

fetal and childhood periods of brain development, respectively.

This suggests that different CNVs may impact different brain re-

gions during different periods of brain development.

16p11.2 Co-Expressed Interacting Protein Pairs Are
Enriched in the Late Mid-Fetal and Childhood Periods
We focused our subsequent analysis on the 16p11.2 CNV

because it represents the most interesting example of a region

with a broad phenotypic expressivity (Weiss et al., 2008). To

assess the statistical significance of the enrichment observed

for 16p11.2 CNV, we calculated the fractions of co-expressed in-

teracting protein pairs across all spatiotemporal intervals in three

control datasets: all HIBE pairs, proteins from common CNVs

identified in the 1000 Genomes Project (Mills et al., 2011) con-

nected by interactions from HIBE, and all possible pairs between

16p11.2 genes and human brain-expressed genes (Experi-

mental Procedures). These analyses consistently identified the

late mid-fetal and childhood periods as being significantly en-

riched in co-expressed interacting pairs independently of the

control dataset (Figure 3A). The sequential removal of each of

the 16p11.2 proteins together with their corresponding partners

from the network did not influence this unique spatiotemporal

signature or the enriched spatiotemporal intervals (Figure S1).

This indicates that the observed enrichment is not due to random

effects from PPIs, CNV, or co-expression because different

types of controls should have addressed these biases. After

false discovery rate (FDR) correction for multiple testing, we

identified a significant enrichment in five intervals: P3R1 (Fisher’s

exact test, p = 8.7 3 10�9), P3R2 (p = 5.0 3 10�13), P3R3 (p =

0.003), P3R4 (p = 0.042), and P6R2 (p = 0.013) (Figure 3A). To

control for the biases from network topology, we used randomly

permuted genomic regions with the same number of genes and

interactions as in 16p11.2 CNV as an additional control. This

analysis confirmed four out of five previously identified networks

as being significantly enriched in co-expressed interacting pairs

(Figure 3B). Furthermore, using a more stringent co-expression

coefficient (Figure S2), restricting network to PPIs only detected

by the systematic high-throughput screens or only to co-ex-

pressed gene pairs produced similar results (Figure S3).

16p11.2 Networks Change across
Spatiotemporal Intervals
To identify commonalities between the spatiotemporal 16p11.2

networks, we investigated their convergence by calculating the

fraction of shared proteins in these networks. We observed
Neuron 85, 742–754, February 18, 2015 ª2015 Elsevier Inc. 743
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Figure 1. Spatiotemporal Protein-Protein Interaction Network Construction

Spatiotemporal PPI networks were constructed by integrating physical protein-protein interaction data with the brain spatiotemporal transcriptome. The con-

nections (solid black lines) between CNV proteins (red circles) and their interacting partners (gray circles) within the spatiotemporal PPI networks were drawn only

when two proteins were co-expressed and interacting physically (dashed black lines). Four brain regions (R1, yellow; R2, green; R3, blue; R4, orange) and eight

brain developmental periods (P1–P8) were integrated to build 32 spatiotemporal PPI networks for each CNV region. See also Tables S2 and S3.
that 11 of 18 (61%) of the 16p11.2 CNV proteins and 20 of 187

(10.7%) of their co-expressed interacting partners are shared

by all four networks (Figure 4A). These numbers are significantly

higher than expected by chance from 10,000 randomly simu-

lated spatiotemporal networks with the same properties (cor-

rected empirical p = 0.01 for 16p11.2 proteins and corrected

empirical p = 0.02 for the partners). Furthermore, co-expressed

interacting protein pairs shared by all four networks are signifi-

cantly, and perhaps unsurprisingly, enriched in the pathways

relevant to neuronal development, signaling by nerve growth

factor (NGF) (FDR-corrected p = 0.005), and signaling by Wnt
744 Neuron 85, 742–754, February 18, 2015 ª2015 Elsevier Inc.
(FDR-corrected p = 0.002) (Figure 4A). In agreement with recent

findings (Willsey et al., 2013), spatiotemporal 16p11.2 networks

are also enriched in cortical glutamatergic neuron markers in

layers 5 and 6 (empirical p = 0.0098) (Table S4), suggesting

that shared neuronal circuits may be involved in autism subtypes

caused by mutations affecting different genes.

Our subsequent analyses addressed the question of the

spatiotemporal 16p11.2 network differences. The co-expressed

interacting protein pairs within four spatiotemporal 16p11.2 net-

works are enriched across different brain regions (R1, R2, and

R3) within the same developmental period (late mid-fetal P3)
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Seven CNVs conferring a high risk for multiple psychiatric disorders were

analyzed in combination (high-risk CNVs line) and independently to calculate

the fractions of co-expressed interacting protein pairs for each spatiotemporal

interval. Each cell represents the fold change of the fraction of co-expressed

interacting pairs of the CNV network compared with the background control of

co-expressed interacting pairs from the HIBE network. The color scale in-

dicates the fold change level, ranging from 0 (blue, depletion) to 2 (red,
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expressed interacting protein pairs in the combined CNV network and in the
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as in real CNVs compared with the background control. Themedian frequency

of 10,000 simulated networks for each spatiotemporal interval is shown. CNVs

show distinct spatiotemporal signatures when analyzed separately.
and also across different developmental periods (late mid-fetal

P3 and childhood P6) within the same brain region (R2). We

next compared network changes within the same period (P3)

andwithin the same region (R2) by calculating fractions of co-ex-

pressed interacting pairs that are shared by different networks

(Figure 4B). We found no significant difference between three re-

gions within the same developmental period (P3R1, P3R2, and

P3R3; ANOVA; p = 0.33; n = 14) (Experimental Procedures; Table

S5). However, statistically significant differences were observed

when P3R2 was compared with P6R2 (ANOVA, p = 4.9 3 10�7,

n = 15) (Table S6). This suggests that 16p11.2 network changes

are more pronounced across developmental periods than

across brain regions. Our data further suggest that spatiotem-

poral interaction networks may undergo substantial changes in

the developing brain.

De Novo ASD Mutations Are Significantly Enriched
in Spatiotemporal Networks
Recent exome sequencing studies have identified a large num-

ber of de novo mutations in ASD, SCZ, and ID patients. Analysis

of the interacting partners of 16p11.2 proteins using the com-

bined set of 1,975 de novo mutations from three disorders indi-

cates that the entire 16p11.2 network and four spatiotemporal

intervals are significantly enriched in genes carrying likely

gene-damaging (LGD) and multiple-hit de novo mutations,

even after correction for gene size andGC content (Experimental

Procedures; Table S7). At the same time, none of the networks is

enriched in genes with mutations detected in controls. However,

the number of mutations in controls is limited. Importantly, the

observed effect is largely driven by the ASD mutations because

no significant enrichment is observed for SCZ and ID mutations

when the analysis is performed separately for each disorder. This

result agrees with the study by Fromer et al. (2014) that also

observed the enrichment of ASD but not SCZ LGD mutations.
Given that schizophrenia is associatedwith 16p11.2 duplications

but not with deletions, this lack of association in SCZ is not

surprising.

The spatiotemporal networks are also significantly enriched in

post-synaptic density genes and fragile X mental retardation

protein (FMRP) target genes (Table S7), in agreement with previ-

ous studies (Fromer et al., 2014; Iossifov et al., 2012). These

enrichment results provide independent lines of evidence for dis-

ease risk association and suggest that the functional impact of

de novo mutations on networks needs further investigation.

Spatiotemporal KCTD13 Networks Identify DNA
Replication and RhoA Pathways
One of the strongest candidates for a gene that is a major

contributor to neuropsychiatric phenotypes within the 16p11.2

locus is KCTD13. A recent study in a zebrafish model has

convincingly demonstrated that KCTD13 is the only gene within

the 16p11.2 region capable of inducing the microcephalic

phenotype associated with the 16p11.2 duplication and the

macrocephalic phenotype associated with the 16p11.2 deletion

(Golzio et al., 2012). Importantly, these phenotypes in the fish are

capturing the mirror phenotypes of humans (McCarthy et al.,

2009). Given this strong functional evidence, we focused on

investigating the interaction pattern of KCTD13 across four

spatiotemporal networks.

The analysis of KCTD13 networks indicates that seven pro-

teins physically interact and are co-expressed with KCTD13

across four spatiotemporal intervals (Figure 5A). Furthermore,

some of these proteins also interact physically and are co-ex-

pressed with each other, thereby forming two functionally dis-

tinct modules, predominantly at P3R1 and P3R2 intervals.

The first functionally related group of proteins that interacts

with KCTD13 consists of PCNA-POLD2-TNFAIP1-KCTD10 (Fig-

ure 5A). KCTD13 is also known as polymerase delta interacting

protein 1 (POLDIP1) because it was initially identified as a bind-

ing partner of the small subunit of polymerase delta, POLD2

(He et al., 2001). KCTD13 also directly interacts with PCNA, an

auxiliary cofactor of polymerase delta, and nuclear localization

of these proteins in the replication foci suggests their role in

DNA replication. Furthermore, KCTD13, TNFAIP1, and KCTD10

have high sequence similarity and share the PCNA binding motif

at the C terminus, suggesting their important roles in DNA syn-

thesis and repair (Wang et al., 2009; Yang et al., 2010).

The second functionally related group of proteins interacting

with KCTD13 consists of Cul3-TNFAIP1-KCTD10 (Figure 5A).

CUL3 encodes the scaffold protein cullin, a core component of

E3 ubiquitin-protein ligase complexes that mediates the ubi-

quitination and subsequent proteasomal degradation of target

proteins. These multimeric complexes play key roles in the regu-

lation and control of the cell cycle (Genschik et al., 2013) along

with other biological functions. The complex of Cul3 with adaptor

proteins KCTD13, TNFAIP1, and KCTD10 regulates the ubiquiti-

nation and degradation of the small GTPase RhoA, which, in turn,

is a major regulator of the actin cytoskeleton and cell migration.

The RNAi knockdown of eitherCUL3 or adaptor proteins leads to

abnormal RhoA accumulation and activation, resulting in exces-

sive actin stress fiber formation and impaired cell migration

(Chen et al., 2009b), whereas downregulation of RhoA activity
Neuron 85, 742–754, February 18, 2015 ª2015 Elsevier Inc. 745
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(A) The fractions of protein pairs from the 16p11.2 CNV co-expressed and interacting with HIBE proteins (red line), all co-expressed and interacting HIBE proteins

(black line), proteins from 1000 Genome Project CNVs co-expressed and interacting with HIBE proteins (dark gray line), and 16p11.2 CNV genes co-expressed

with all brain-expressed human genes (light gray line). Twenty-seven spatiotemporal intervals of brain development are shown on the x axis. 16p11.2 co-ex-

pressed interacting protein pairs are significantly enriched in five spatiotemporal intervals (star symbols) compared with three control networks. The statistical

enrichment was calculated using Fisher’s exact test, and p values were FDR-corrected for multiple comparisons.

(B) The spatiotemporal intervals with significant enrichment were further evaluated against a background control of 10,000 simulated CNV networks with

the same number of genes and interactions (±10%) as in the 16p11.2 network. Four out of five spatiotemporal intervals remained significantly enriched (P3R1,
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promotes cell migration (Govek et al., 2011). Because RhoA

levels are likely regulated through the formation of the

KCTD13-Cul3-RhoA complex, maintaining sufficient and

balanced levels of its components may be crucial for the proper

functioning of the RhoA pathway in neuronal development,

including neurite outgrowth, axon pathfinding, neuronal migra-

tion, dendritic spine formation, and maintenance. It is possible

that 16p11.2 deletions and duplications that lead to dosage
746 Neuron 85, 742–754, February 18, 2015 ª2015 Elsevier Inc.
changes of 16p11.2 genes, including KCTD13, could impair

this important neuronal pathway, especially during the P3R1

developmental interval when this protein complex is most likely

to form. In conclusion, our analyses identified two KCTD13-

centered interconnected modules with different functions: one

involved in DNA replication, synthesis, and repair which is pri-

marily observed in the prefrontal and motor-sensory cortex dur-

ing late mid-fetal development (P3R2); and the other involved in
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Figure 4. Functional Convergence and Divergence of the 16p11.2 Spatiotemporal Networks

(A) The overlap of 16p11.2 genes (left Venn diagram) and their co-expressed interacting partners (right Venn diagram) across four significant spatiotemporal

intervals. The statistical significance of observing a higher than expected number of overlapping genes (star symbol) was assessed by permutation test using

simulated CNVs. The enrichment analyses of 20 interacting pairs shared by four intervals were performed using the Database for Annotation, Visualization, and

Integrated Discovery (DAVID). The ‘‘Signaling by NGF’’ and ‘‘Signaling by Wnt’’ pathways are significantly enriched.

(B) Comparison of spatiotemporal networks across different brain regions within the same developmental period (P3R1, P3R2, and P3R3) and across different

developmental periods within the same brain region (P3R2 and P6R2). 16p11 genes are shown as red nodes, their co-expressed interacting partners as gray

nodes, and the PPIs between co-expressed genes at a particular developmental period are shown as colored edges (P3R1, turquoise; P3R2, blue; P3R3,

greenish gray; P6R2, purple). The nodes that lost all edges were removed from the corresponding networks. Significant differences are observed across

developmental periods but not across brain regions (ANOVA, table below). See also Tables S5 and S6.
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the formation of E3 ubiquitin ligase complexes, which is primarily

observed in the parietal, temporal, and occipital cortex during

late mid-fetal development (P3R1).

De Novo Truncating Mutations in CUL3 Disrupt Its
Interaction with KCTD13
One of the interacting partners of KCTD13, Cul3, carries two

de novo protein-truncating mutations, p.Glu246Stop (E246X)

(O’Roak et al., 2012) and p.Arg546Stop (R546X) (Kong et al.,

2012), that have been detected in two unrelated ASD patients.

To evaluate the impact of these mutations on the physical inter-

action between KCTD13 and Cul3, we carried out yeast-two-

hybrid (Y2H) experiments with the wild-type and two mutants

of CUL3 (Experimental Procedures). We observed that both

mutations significantly weaken or even abolish the KCTD13-

Cul3 interaction, whereas the interaction of KCTD13 with the

wild-type Cul3 is preserved (Figure 5B). Interestingly, the same

mutations do not disrupt interactions of Cul3 with three other

BTB/POZ domain-containing proteins, KCTD10, KCTD9, and

KCTD6 (Figure 5B). Because the interaction of KCTD13 with

Cul3 is required for RhoA ubiquitination and subsequent degra-

dation, our results suggests that the disruption of KCTD13-Cul3

interaction by gene-damaging mutations may impact RhoA pro-

tein levels and dysregulate the RhoA pathway.

KCTD13-CUL3-RHOA Co-Expression Patterns
in the Developing Cortex
Deficits in cortical patterning have been observed recently in

ASD (Parikshak et al., 2013; Stoner et al., 2014; Willsey et al.,

2013) and SCZ (Gulsuner et al., 2013) patients. Given the vari-

ability in gene expression across different cortical layers of the

brain, we further investigated the pairwise co-expression pat-

terns of three genes, KCTD13, CUL3, and RHOA, using more

detailed layer-specific expression data from laser-microdis-

sected (LMD) prenatal human brain (Miller et al., 2014; Experi-

mental Procedures; Table S8). We observed that, in the majority

of LMD substructures from P3R1 and P3R2 networks, the

expression levels of KCTD13 and CUL3 were positively corre-

lated (Figure 5C). The highest co-expression values were

observed in the ventromedial extrastriate cortex (P3R1) and in

the dorsomedial frontal, rostral cingulate, and midcingulate cor-

tex (P3R2). In addition, KCTD13 and CUL3 were co-expressed

in layer 4 corresponding to the inner cortical plate (Figure 5C).

On the contrary, the KCTD13-RHOA and CUL3-RHOA pairs
Figure 5. The 16p11.2 Spatiotemporal Networks Implicate the KCTD13

(A) Static (left) and dynamic (four right panels) spatiotemporal networks of the KCT

spatiotemporal intervals are as in Figure 4. The P3R1 network connects the ubiqu

P3R2 network are primarily involved in DNA replication and repair.

(B) The results of Y2H experiments indicate that two truncating mutations of C

KCTD9-Cul3, or KCTD6-Cul3 interactions. The interaction of wild-type Cul3 with

(C) Pairwise co-expression profiles of KCTD13, CUL3, and RHOA in laser micro

KCTD13 and CUL3 are correlated positively in the majority of brain substructures

LMD substructures. KCTD13 and CUL3 are co-expressed in layer 4 (inner cortic

(D) The KCTD13-Cul3-RhoA pathway may be dysregulated in both 16p11.2 CNV

migration in the brain during development. When a 16p11.2 CNV deletion (left) or

an increase (upward arrow) of KCTD13 levels. The center of the figure shows the

ubiquitination and degradation. The altered RhoA levels may have opposing fun

disrupted cell migration and influence brain size during prenatal development. S
were correlated negatively in the majority of substructures

(Figure 5C).

These observations are in agreement with experimental re-

sults suggesting that KCTD13 and Cul3 negatively regulate

RhoA levels (Chen et al., 2009b). For example, KCTD13 or

CUL3 knockdown in cell culture systems leads to RhoA/RhoA-

GTP accumulation and actin stress fiber formation (Chen et al.,

2009b). The decrease of the RhoA level has been linked previ-

ously to extensive apoptosis during embryogenesis, resulting

in a dramatic reduction of head and body size in a zebrafish

model (Zhu et al., 2008). Alternatively, the upregulation of RhoA

through its constitutive expression has been linked to suppres-

sion of dendritic spine morphogenesis and to a dramatic loss

of spines (Govek et al., 2011; Zhang and Macara, 2008). The

important role of RhoA protein levels in the local regulation of

axon growth has been demonstrated recently (Walker et al.,

2012).

It is tempting to speculate that CUL3 mutations as well as

16p11.2 deletions and duplications that alter the dosage of

KCTD13 may act via a similar mechanism by influencing RhoA

protein levels (Figure 5D). The changes in RhoA levels may, in

turn, regulate cellular processes that influence head and body

size during development. However, it remains to be determined

whether these two types of mutations in genes from the same

pathwaymay have relatedmolecular consequences in the brains

of patients.

DISCUSSION

We report the construction of dynamic spatiotemporal interac-

tion networks connecting genes from the 16p11.2 CNV, a strong

genetic risk factor for multiple psychiatric disorders. In contrast

to traditional approaches that use static representation of pro-

tein interaction networks to establish functional connections

between genes, we integrate physical PPIs with genome-scale

transcriptome data from the developing human brain to gain

new insights into pathways that may be dysregulated by CNV

mutations. This novel approach enables the investigation of mo-

lecular mechanisms of psychiatric disorders in the context of

brain development.

One of the most intriguing observations from our study is

that some CNVs have distinct spatiotemporal signatures, with

enrichment of the co-expressed interacting protein pairs at

different developmental stages in different brain regions. For
-Cul3-RhoA Pathway in the Pathogenesis of Psychiatric Diseases

D13 protein together with its co-expressed interacting partners. Edge color and

itin ligase Cul3 to other network members. The interconnected members of the

ul3 detected in autism patients disrupt KCTD13-Cul3 but not KCTD10-Cul3,

KCTD13 remains intact.

-dissected prenatal human brain substructures (left) and cortical layers (right).

. RHOA is correlated negatively with both KCTD13 and CUL3 in the majority of

al plate).

carriers and in patients with the truncating CUL3mutations through altered cell

duplication (right) event occurs, it may lead to a decrease (downward arrow) or

KCTD13-Cul3-RhoA pathway where KCTD13-Cul3 interaction regulates RhoA

ctional consequences during brain development, which may, in turn, lead to

ee also Table S8.
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example, a high fraction of interactions derived from the Wil-

liams-Beuren/7q11.23 microduplication syndrome CNV region

implicated in both autism (Sanders et al., 2011) and schizo-

phrenia (Mulle et al., 2014) are ‘‘turned on’’ (i.e., co-expressed)

during early fetal development in the hippocampus, amygdala,

and striatum (P1R3, Figure 2). This signature is quite different

from the one for 3q29 CNV, also conferring a high risk for several

psychiatric disorders, including schizophrenia (Mulle et al.,

2010), when the interactions are primarily turned on during

cortical development in infancy (P5R2, Figure 2). The 3q29

signature is, again, quite distinct from the 16p11.2 signatures

(P3R1 and P3R2), the 17q12 signature (P8R2), or the 22q11.21

signature (P6R2) (Figure 2). Although no signature has been

observed for one CNV, 15q11, and some of the intervals did

not withstand the stringent permutation correction, we found

statistically robust spatiotemporal signatures for multiple inter-

vals in three high-risk CNVs in addition to the 16p11.2 locus (Fig-

ure S4). These observations suggest that CNVsmay have critical

periods in brain development when their functional impact is

most apparent and that specificmolecular pathwaysmay be dis-

rupted primarily during these critical developmental windows.

In the case of 16p11.2, we identified the late mid-fetal devel-

opmental period as most critical for establishing connections

of CNV proteins with their partners. During this period, corre-

sponding to 19–24 post-conceptual weeks (PCW) of fetal devel-

opment (Kang et al., 2011), a higher than expected number of

pairs were found to be co-expressed and interacting in the ma-

jority of cortical regions (Figure 3). Our results are in agreement

with a recent study by Willsey et al. (Willsey et al., 2013) that

also identified the same developmental period as crucial for

autism pathogenesis, albeit using a different set of genes and

a different approach that did not incorporate protein interaction

networks into the analyses. The observed convergence is en-

couraging and suggests that brain alterations during the late

mid-fetal period may be common for different types of autisms,

even for those with diverse genetic backgrounds (i.e., 16p11.2

CNV and de novo mutations).

Another important observation that emerges from our study

is the profound interaction network changes during brain devel-

opment. By comparing 16p11.2 network connectivity during

different developmental periods (P3 and P6) and among different

brain regions (R1, R2, and R3) we found that these networks

vary more temporarily than spatially (Figure 4B). This suggests

that post-translational dysregulation during brain development

may play a central role in the pathogenesis of neuropsychiatric

diseases.

One of the pathways our study proposes as being most likely

impacted by the 16p11.2 CNV is KCTD13-Cul3-RhoA. The tran-

scriptional profiles of these three genes are interdependent, with

KCTD13-CUL3 being correlated positively and both KCTD13-

RHOA and CUL3-RHOA being correlated negatively (Figure 5C).

Furthermore, it has been suggested previously that KCTD13 and

Cul3 regulate RhoA protein levels through ubiquitination by the

KCTD13-Cul3 ligase complex, based on the observation that

RhoA accumulates upon KCTD13 or CUL3 knockdown (Chen

et al., 2009b). Our study further demonstrates that KCTD13

and Cul3 interact physically and that they are co-expressed dur-

ing the late mid-fetal period of cortical development (Figures 5A–
750 Neuron 85, 742–754, February 18, 2015 ª2015 Elsevier Inc.
5C), thereby placing the KCTD13-Cul3-RhoA complex into a

spatiotemporal context of brain development.

Recent exome sequencing studies have identified two de

novo CUL3 LGD mutations in unrelated patients with ASD

(Kong et al., 2012; O’Roak et al., 2012). These loss-of-function

mutations may lead to production of shorter proteins with a

missing C terminus, likely disrupting the normal functioning of

Cul3. Alternatively, the truncationsmay activate nonsense-medi-

ated decay mechanisms, leading to elimination of the mutant

transcripts. We hypothesized that, in both cases, either through

protein disruption or through alteration of the expression levels,

the interaction of Cul3 with several partners may be perturbed.

We tested this hypothesis and demonstrated that truncating mu-

tations of Cul3 indeed disrupt the KCTD13-Cul3 physical interac-

tion, possibly impacting RhoA levels (Figure 5).

Using a prenatal human brain LMD transcriptome (Miller et al.,

2014), we next show that KCTD13 and CUL3 are highly co-ex-

pressed in layer 4 of the cortical plate (Figure 5C). Disruption of

the KCTD13-Cul3 interaction, either through dosage imbalance

of KCTD13 as a result of 16p11.2 CNV or by CUL3 mutations,

may potentially affect this brain layer. Interestingly, a recent

study pointed to the same layer 4 as having pathological focal

patches of abnormal laminar cytoarchitecture and cortical disor-

ganization of neurons in prefrontal and temporal cortical tissues

in a majority of young children with autism (Stoner et al., 2014).

Further anatomical, cytological, and gene expression studies

of the brains from individuals with 16p11.2 CNVs would reveal

whether such patches are more pronounced among 16p11.2

CNVs carriers. Presently, the convergence of neuroanatomical

data from Stoner et al. (2014) with genetic, co-expression, and

protein interaction data suggests that RhoA pathways may be

involved in the dysregulation of layer formation and layer-spe-

cific neuronal differentiation at prenatal developmental stages.

However, further studies are needed to directly connect the

16p11.2 phenotype with the dysregulation of the RhoA pathway.

One of the limitations of our study is the lack of cellular-level

resolution for the networks we constructed. Although spatiotem-

poral networks are an advancement compared with the static

network models, they still lack the power to implicate specific

neuronal cell types or neuronal populations into disease patho-

genesis. This lack of resolution is largely due to the absence of

the single-cell developmental transcriptome data that will ulti-

mately be required to fully exploit novel approaches developed

here. Further advancement of the single-cell genomic, transcrip-

tomic, and proteomic technologies (Shapiro et al., 2013), espe-

cially in the context of brain development (Kitchen et al., 2014),

will open new avenues for improving the resolution of the dy-

namic spatiotemporal neuronal networks.

Another limitation of our study is that brain developmental tran-

scriptome data used for the analyses was not derived from pa-

tients with psychiatric disorders. However, postmortem brain tis-

sues from16p11.2CNVcarriers are scarce, and no transcriptome

data are currently available for early developmental stages of

these individuals. To address this shortcoming, we used lympho-

blast transcriptome data from 16p11.2 deletion and duplication

carriers (Luoet al., 2012) to identify changes in the expressionpat-

terns of interacting pairs from our spatiotemporal networks (Sup-

plemental Experimental Procedures; Figure S5). We observed



that some highly co-expressed interacting pairs, including KCTD-

Cul3, have a significantly reduced expression in the lymphoblasts

of deletion carriers, whereas other pairs have a significantly

increased expression in the duplication carriers (Table S9).

The RhoA pathway has been studied intensively in the past

decade using different cellular models and model organisms.

Rho GTPases play critical roles in neuronal migration and are

key regulators of actin and themicrotubule cytoskeleton, cell po-

larity, and adhesion. The data from the literature strongly suggest

that the Rho GTPase signaling pathway has important functions

in brain morphogenesis at early stages of brain development

(Chen et al., 2009a; Govek et al., 2011; Zhu et al., 2008). Although

results may vary depending on the study, general findings are

that the increase in RhoA levels leads to stress fiber formation,

axon growth inhibition, enhanced cell spreading, loss of dendritic

spines, and neurite retraction, whereas the opposite effects are

observed when RhoA levels are decreased (Figure 5D). In addi-

tion, knockdown of RHOA has been shown to lead to reduced

head and body size and increased apoptosis in a zebrafishmodel

(Zhu et al., 2008). Integrating the results of our study into this

model allows us to suggest that the functional impact of the

16p11.2 CNV may be manifested through dysregulation of the

RhoA pathway. Specifically, we propose that KCTD13 dosage

changes in deletion and duplication carriers may influence

RhoA levels and lead to impaired brain morphogenesis and cell

migration during the fetal stages of brain development. Further-

more, based on our experimental results, we suggest that the

functional impact of CUL3 truncating mutations may also be

manifested through the RhoA pathway. Intriguingly, activation

of RhoA signaling, albeit through a different mechanism, has

recently been implicated in a rare monogenic form of autism,

Timothy syndrome (Krey et al., 2013). If confirmed by further

studies, this convergence of different types of mutations on a

common pathway will provide a basis for future exploration of

the role of RhoA in autismand in other neuropsychiatric diseases.

EXPERIMENTAL PROCEDURES

Human High-Risk CNVs for Psychiatric Disorders

Previous studies have demonstrated evidence of a strong association of ASD,

SCZ, BD, and ID with the following 11 CNV loci (deletions and/or duplications):

1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.23, 15q11.2, 15q11.2-13.1, 15q13.3,

16p13.11, 16p11.2, 17q12, and 22q11.21 (Malhotra and Sebat, 2012). All of

these loci are implicated as highly significant risk factors for two or more psy-

chiatric disorders. Four of the CNVs from this list (2p16.3, 15q11.2, 15q13.3,

and 16p13.11) contain less than ten protein-coding genes each and were

not included in this study because of limited sizes of the resulting PPI net-

works. The remaining CNVs containing a total of 145 genes were investigated

in this study (Table S1). The CNV boundaries were defined as described pre-

viously (Malhotra and Sebat, 2012).

Human Brain Transcriptome Data

To build dynamic spatiotemporal PPI networks in the context of human brain

development, BrainSpan transcriptome exon microarray data (Kang et al.,

2011) (http://www.brainspan.org) summarized to Gencode 10 (Harrow et al.,

2012) genes was used. This dataset consists of 1,340 brain samples and

was generated by dissecting brain regions from 57 clinically unremarkable

postmortem brain donors ranging in age from 4 PCW to 82 years. The expres-

sion levels of 17,181 protein-coding genes within each sample were assayed

using the Affymetrix GeneChip Human Exon 1.1 ST Array platform as

described in Kang et al. (2011). To reduce noise, we included only genes
with log2 intensity values of more than 6 in at least one sample and with a co-

efficient of variance at least 0.07. As a result, a total of 14,619 genes were

considered as brain-expressed.

The Datasets of Physical Protein-Protein Interactions Restricted

to Brain-Expressed Genes

A comprehensive map of physically interacting human proteins was assem-

bled using our experimentally identified physical binary interactions (HIC)

expanded with physical interactions from the BioGRID 3.2.106 (Stark et al.,

2006) downloaded in October 2013. HIC was assembled to include the interac-

tions from two datasets: the Human Interactome II-14 (HI-II-14) (Rolland et al.,

2014) containing �14,000 novel physical binary interactions between �4,300

human proteins and the gene-level binary interactions from the Autism Splice-

form Interaction Network (ASIN) (Corominas et al., 2014) (ASIN later became

a part of the newer version of BioGRID 3.2.116). After redundancy and self-

interaction removal, the PPI network was integrated with the human brain

transcriptome to assemble the brain-expressed Human Interactome (HIBE),

consisting of 116,147 pairs of brain-expressed interacting proteins.

Construction of Spatiotemporal PPI Networks

The brain transcriptome data were generated across 13 dissection stages

varying from eight to 16 brain structures for each stage (Kang et al., 2011).

Because well defined anatomical structures are limited during early embryonic

development, the first period (4–8 PCW) was removed from further analysis.

After merging the dissection stages, we defined eight non-overlapping devel-

opmental periods ranging from 8 PCW to 40 years of age (Table S3). Brain re-

gions were grouped into four clusters using hierarchical clustering based on

brain transcriptional similarity to reflect actual topological proximity and func-

tional segregation as described inWillsey et al. (2013) (Figure 1). As a result, 27

spatiotemporal regions were defined after eliminating the late fetal (P4) devel-

opmental period and one region from P5 (P5R3) because of lack of transcrip-

tome data for analyses.

The CNV genes were mapped to the HIBE network to construct a static

brain-expressed PPI network for each CNV region. Subsequently, spatiotem-

poral co-expression data were integrated with the static PPI network. An

interaction between two proteins was defined as positive if the pairwise

Spearman’s correlation coefficient (SCC) value was >0.5 (using a more strin-

gent SCC of >0.7 led to similar results; Figure S2). Using this approach, 27

different spatiotemporal CNV networks were generated and used for further

analyses for each CNV region (Figure 1). The combined 16p11.2 spatiotem-

poral network consisted of 416 brain-expressed and interacting protein

pairs involving 21 16p11.2 proteins and 367 interacting partners from HIBE
(Table S2).

Enrichment Analyses in Four Spatiotemporal Networks

To test for the enrichment of shared co-expressed interacting partners be-

tween four spatiotemporal networks in Figure 4A, 10,000 simulated CNVs

with the same number of genes and interactions as in 16p11.2 were generated.

For each simulated CNV, the number of shared co-expressed interacting part-

ners was determined and comparedwith 16p11.2 networks. Finally, the empir-

ical p values were calculated based on the fraction of 10,000 simulated CNVs

with an equal or higher number of shared co-expressed interacting partners

than in 16p11.2 networks. p values were FDR-corrected for multiple testing.

To evaluate the differences between four spatiotemporal networks in Fig-

ure 4B, one-way ANOVA tests were performed. To test the variance among

the networks from three brain regions of the same developmental period

(P3R1, P3R2, and P3R3; Table S5), three topological properties were defined

for each 16p11.2 CNV gene: the fraction of co-expressed interacting partners

unique to one network, the fraction of co-expressed interacting partners

shared by two out of three networks, and the fraction of co-expressed interact-

ing partners shared by all three networks. Similarly, to test the variance be-

tween the networks from two developmental periods of the same region

(P3R2 and P6R2; Table S6), two topological properties were defined for

each 16p11.2 CNV gene: the fraction of co-expressed interacting partners

unique to one network and the faction of co-expressed interacting partners

shared by both networks. ANOVAwas used to calculate statistically significant

differences between the networks.
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The enrichment analyses of interacting protein partners from 16p11.2

spatiotemporal networks were performed using HIBE as a background (Table

S7). The de novo mutations (DNMs) were extracted from 19 publications,

and network genes were classified as ‘‘likely gene-damaging’’ if they carried

nonsense, frameshift, or splice site de novo mutations and ‘‘multiple-hit’’ if

they carried two or more LGD and/or missense mutations. The post-synaptic

density genes and FMRP target genes were extracted as described previously

(Corominas et al., 2014). The p values were corrected for gene size and GC

content. The empirical p values were calculated by selecting from the HIBE
10,000 datasets with the same gene lengths (±10%) or the same GC content

(±10%) as in the 16p11.2 networks. The reported p valueswere FDR-corrected

(Table S7).

Analysis of Physical Interactions of Wild-Type and Mutant Cul3

To compare interactions patterns of the protein products of the wild-type (WT)

and mutant (E246X and R546X) CUL3 gene, site-directed mutagenesis and

binary interaction mapping were carried out as described previously (Zhong

et al., 2009). Each de novo mutation was introduced into a WT open reading

frame (ORF) clone by a two-step procedure using specific primers (Supple-

mental Experimental Procedures). Each of the corresponding CUL3 clones

(WT, E246X, and R546X) was introduced into pDEST-DB (DNA binding

domain) via Gateway LR reaction. The interacting partners in the pDEST-AD

(activation domain) configuration were obtained from the human ORFeome

collection (Yang et al., 2011). Y2H mating was performed as follows: DBs

and ADs were spotted on yeast extract peptone dextrose agar plates,

replica-plated onto synthetic complete-Leu-Trp plates for diploid selection,

and then replica-plated onto the phenotyping plates with 3-amino-1,2,4-tria-

zole (3-AT) (control for interaction) and with 3-AT plus cycloheximide (CHX)

(control for autoactivation). The growth intensity on 3-AT plates was compared

between the wild-type and the mutants to determine the presence or the

absence of interaction perturbations (Supplemental Experimental Proce-

dures). PCR products of bait and prey ORFs of all positive colonies were

Sanger-sequenced to confirm the identities of the interacting partners.

Analysis of KCTD13-CUL3-RHOA Co-Expression in the

Laser-Microdissected Prenatal Human Brain

To investigate KCTD13-CUL3-RHOA co-expression patterns in the prenatal

human brain, layer-specific gene expression data were obtained from Miller

et al. (2014) and downloaded from BrainSpan (http://www.brainspan.org).

This dataset profiles gene expression in two brains spanning periods 2 and

3 of development (15–21 PCW). Gene expression profiles were assessed for

347 finely laser-microdissected tissues from subdivisions distributed across

cortical and noncortical regions (Miller et al., 2014). Gene expression of highly

discrete laser-microdissected brain regions from two 21-PCW brains were ex-

tracted for our analyses (Table S8). To reduce the noise, we only used probes

with evidence of robust expression (detection p value% 0.01 in at least 50%of

all samples). After filtering, 36,956 probes (corresponding to 16,470 genes)

were used for the analyses. Because multiple probes can cover each gene,

the expressions of these probes within the same sample were averaged, re-

sulting in a vector of expression values to represent each gene.

The neocortical substructures (a total of 27) and the layers of cortical regions

(a total of nine) were defined as in Miller et al. (2014) (Table S8). To investigate

KCTD13-CUL3-RHOA co-expression in each layer, the pairwise SCCs were

calculated, and genes with an SCC of >0.5 were considered co-expressed.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and nine tables and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2015.01.010.

AUTHOR CONTRIBUTIONS

L.M.I., G.N.L., and R.C. conceived the study and designed the experiments

and analyses. G.N.L. and R.C. performed the experiments and analyses. I.L.

and J.T. contributed to the experiments. X.Y., D.E.H., M.V., and J.S. contrib-

uted to the analyses and discussion of the project. L.M.I. directed the project.
752 Neuron 85, 742–754, February 18, 2015 ª2015 Elsevier Inc.
All authors discussed the results. L.M.I., G.N.L., and R.C. wrote the

manuscript.

ACKNOWLEDGMENTS

We thank Katherine Tsimring and Keith Happawana for technical assistance.

We also thank Shuli Kang for help with protein interaction dataset processing

and Nidhi Sahni for advice during the experiments. J.T. is the recipient of

ERC Advanced Grant 340941. This work was supported by NIH grants

R01MH091350 (to L.M.I.), R01HD065288 (to L.M.I), R21MH104766 (to

L.M.I.), R01MH105524 (to L.M.I.) and R01MH076431 (to J.S.) and by a Simons

Foundation grant SFARI 275724 (to J.S.).

Received: June 28, 2014

Revised: August 17, 2014

Accepted: January 14, 2015

Published: February 18, 2015

REFERENCES

Bijlsma, E.K., Gijsbers, A.C., Schuurs-Hoeijmakers, J.H., van Haeringen, A.,

Fransen van de Putte, D.E., Anderlid, B.M., Lundin, J., Lapunzina, P., Pérez
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Steinberg, S., Fossdal, R., Sigurdsson, E., Sigmundsson, T., Buizer-

Voskamp, J.E., et al.; GROUP (2008). Large recurrent microdeletions associ-

ated with schizophrenia. Nature 455, 232–236.

Stoner, R., Chow, M.L., Boyle, M.P., Sunkin, S.M., Mouton, P.R., Roy, S.,

Wynshaw-Boris, A., Colamarino, S.A., Lein, E.S., and Courchesne, E. (2014).

Patches of disorganization in the neocortex of children with autism. N. Engl.

J. Med. 370, 1209–1219.

Walker, B.A., Ji, S.J., and Jaffrey, S.R. (2012). Intra-axonal translation of RhoA

promotes axon growth inhibition by CSPG. J. Neurosci. 32, 14442–14447.

Walsh, T., McClellan, J.M., McCarthy, S.E., Addington, A.M., Pierce, S.B.,

Cooper, G.M., Nord, A.S., Kusenda, M., Malhotra, D., Bhandari, A., et al.
754 Neuron 85, 742–754, February 18, 2015 ª2015 Elsevier Inc.
(2008). Rare structural variants disrupt multiple genes in neurodevelopmental

pathways in schizophrenia. Science 320, 539–543.

Wang, Y., Zheng, Y., Luo, F., Fan, X., Chen, J., Zhang, C., and Hui, R. (2009).

KCTD10 interacts with proliferating cell nuclear antigen and its down-regula-

tion could inhibit cell proliferation. J. Cell. Biochem. 106, 409–413.

Weiss, L.A., Shen, Y., Korn, J.M., Arking, D.E., Miller, D.T., Fossdal, R.,

Saemundsen, E., Stefansson, H., Ferreira, M.A., Green, T., et al.; Autism

Consortium (2008). Association between microdeletion and microduplication

at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675.

Willsey, A.J., Sanders, S.J., Li, M., Dong, S., Tebbenkamp, A.T., Muhle, R.A.,

Reilly, S.K., Lin, L., Fertuzinhos, S., Miller, J.A., et al. (2013). Coexpression net-

works implicate human midfetal deep cortical projection neurons in the path-

ogenesis of autism. Cell 155, 997–1007.

Yang, L., Liu, N., Hu, X., Zhang,W.,Wang, T., Li, H., Zhang, B., Xiang, S., Zhou,

J., and Zhang, J. (2010). CK2 phosphorylates TNFAIP1 to affect its subcellular

localization and interaction with PCNA. Mol. Biol. Rep. 37, 2967–2973.

Yang, X., Boehm, J.S., Yang, X., Salehi-Ashtiani, K., Hao, T., Shen, Y.,

Lubonja, R., Thomas, S.R., Alkan, O., Bhimdi, T., et al. (2011). A public

genome-scale lentiviral expression library of human ORFs. Nat. Methods 8,

659–661.

Zhang, H., and Macara, I.G. (2008). The PAR-6 polarity protein regulates den-

dritic spine morphogenesis through p190 RhoGAP and the Rho GTPase. Dev.

Cell 14, 216–226.

Zhong, Q., Simonis, N., Li, Q.R., Charloteaux, B., Heuze, F., Klitgord, N., Tam,

S., Yu, H., Venkatesan, K., Mou, D., et al. (2009). Edgetic perturbation models

of human inherited disorders. Mol. Syst. Biol. 5, 321.

Zhu, S., Korzh, V., Gong, Z., and Low, B.C. (2008). RhoA prevents apoptosis

during zebrafish embryogenesis through activation of Mek/Erk pathway.

Oncogene 27, 1580–1589.


	Spatiotemporal 16p11.2 Protein Network Implicates Cortical Late Mid-Fetal Brain Development and KCTD13-Cul3-RhoA Pathway in ...
	Introduction
	Results
	High-Risk CNVs Have Distinct Spatiotemporal Signatures
	16p11.2 Co-Expressed Interacting Protein Pairs Are Enriched in the Late Mid-Fetal and Childhood Periods
	16p11.2 Networks Change across Spatiotemporal Intervals
	De Novo ASD Mutations Are Significantly Enriched in Spatiotemporal Networks
	Spatiotemporal KCTD13 Networks Identify DNA Replication and RhoA Pathways
	De Novo Truncating Mutations in CUL3 Disrupt Its Interaction with KCTD13
	KCTD13-CUL3-RHOA Co-Expression Patterns in the Developing Cortex

	Discussion
	Experimental Procedures
	Human High-Risk CNVs for Psychiatric Disorders
	Human Brain Transcriptome Data
	The Datasets of Physical Protein-Protein Interactions Restricted to Brain-Expressed Genes
	Construction of Spatiotemporal PPI Networks
	Enrichment Analyses in Four Spatiotemporal Networks
	Analysis of Physical Interactions of Wild-Type and Mutant Cul3
	Analysis of KCTD13-CUL3-RHOA Co-Expression in the Laser-Microdissected Prenatal Human Brain

	Supplemental Information
	Acknowledgments
	References


