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of phonon monochromator. The geometric 
filtering of phonon wavelengths distinguishes 
the present result from earlier studies of 
phonon interactions in double quantum dots 
where probe currents were passed directly 
through the dots4,5.

Although QPCs have been used to 
study quantum dots for some time, this 
observation of phonon-mediated back-action 
has appeared now because it depends on a 
strong asymmetry between the charge tunnel 
barriers in a double-dot system, which can 
occur when one barrier is blocked by a third 
dot. Hence it is no coincidence that this result 
closely follows the recent report of coherent 
manipulation of a triple quantum dot by 
some of the same authors, also reported in 
Nature Physics6. Granger and co-workers, as 
well as some of the same authors in previous 
work7, also report the effect in double dots 
biased to assure the needed asymmetry.

A key question now is whether 
understanding this phonon-induced back-
action may allow back-action reduction to 
improve quantum measurements on dots. 

The interference effects observed give a 
strong indication that this may be possible: 
appropriate geometric and biasing conditions 
may enable a quantum-dot molecule to 
ignore the phonons originating from strongly 
driven QPCs by exploiting positions of 
destructive interference.

There is still a long way to go before 
quantum measurement in quantum dots 
reaches the extreme levels of sensitivity 
available to measurements of ensembles 
of atoms in vacuum, or more recently 
to nanomechanical oscillators. The 
understanding and reduction of phonon-
mediated back-action from QPCs, however, 
is only one direction in which charge sensing 
of quantum dots is improving. As another 
recent example, charge transitions in double 
quantum dots have recently been observed 
by means of shifts in either the frequency or 
the phase of high-finesse superconducting 
microwave resonators8,9. The hybridization 
of quantum dots with superconducting 
microwave elements leads to new methods 
for interferometry and amplification. When 

such measurements reach quantum limits 
of sensitivity and are used on multiple 
quantum dots, the inherent entanglement 
with probe currents enables new routes for 
coupling distant dots together. If we do not 
mitigate back-action mechanisms, though, 
such schemes could easily fail, indicating 
the importance of understanding all the 
noise — acoustic and otherwise — from the 
measurement circuitry.� ❐
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The adult human brain comprises more 
than 1011 neurons, each connected 
to around 104 synapses — meaning 

that the percentage of potential connections 
that actually form synapses is only about 
0.00001%. In such sparsely connected 
networks, connection topology becomes 
paramount, and understanding how it 
mediates control has implications far beyond 
the usual applications of control theory, 
such as aircraft design or robotics1,2. One 
way of achieving this involves studying 
controllability, which concerns our ability 
to drive a dynamic system from any initial 
state to any final state in finite time3. Writing 
in Nature Physics, Tamás Nepusz and 
Tamás Vicsek have taken an important step 
towards understanding the controllability of 
complex networks based on their topology4.

To model networks as dynamic systems, 
one can associate each network node with 
a state variable, whose time evolution 
depends on the state variables of the node’s 
neighbours. Such a mapping is natural 

and immediate in many real systems for 
which the state variable of a node has 
a clear physical meaning, such as the 
concentration of a metabolite in metabolic 
networks or the expression level of a gene 
in transcriptional regulatory networks. 
These nodal dynamics have proven effective 
in revealing key insights into network 
controllability — including the result 
that sparse inhomogeneous networks are 
the most difficult to control — through a 
combination of control theory, graph theory 
and statistical physics5. This has in turn 
triggered further research into optimization 
through structural perturbation6, the 
cost of control energy7 and higher-order 
nodal dynamics8.

Instead of exploring network 
controllability using nodal dynamics, 
Nepusz and Vicsek tackled the problem 
from a different angle, examining edge 
dynamics in systems for which a state 
variable is associated with each edge 
(or link) rather than each node4. This 

new point of view leads to results that 
are very different from those of nodal 
dynamics, and fundamentally enriches our 
understanding of network controllability in 
the process. Indeed, although in principle 
edge controllability can be understood 
mathematically as a particular case of nodal 
controllability by using a simple change of 
representation, it turns out to have several 
important properties of its own, as well as 
being amenable to a simple direct algorithm.

At first glance, edge dynamics can 
seem rather exotic — after all, the edges 
of complex networks may not even be 
physical entities. Yet, as Nepusz and Vicsek 
argue4, for some real-world networks edge 
dynamics is the natural representation. 
For example, in social communication 
networks, a node (or say, an individual) 
constantly processes information received 
from its upstream neighbours and makes 
decisions that are communicated to its 
downstream neighbours. The information 
received and passed by a node can be 
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The missing link
A study shows that controlling link dynamics on a network is distinctly different from controlling the dynamics of 
its nodes. This development illustrates how ideas from control-systems engineering can help us better understand 
the organization of complex systems.
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represented by the state variables on its 
incoming and outgoing edges. The node 
itself acts like a switchboard, mapping the 
signals of the incoming edges onto those of 
the outgoing edges. This is also the case in 
a network of computers and routers on the 
Internet, where the edges represent physical 
connections and the state variables on the 
edges represent the amount of packet flow 
along a particular connection in a given 
direction. The switchboard-like mechanism 
of the nodes then corresponds to a load-
balancing or routing mechanism that allows 
packets to reach their destination while 
avoiding congestion.

One way of probing a network’s 
controllability involves finding the minimum 
set of driver nodes, whose time-dependent 
control can guide the system from an 
arbitrary point to anywhere else in its state 
space. For nodal dynamics, this optimization 
problem has already been solved by the 
minimum-inputs theorem5, which maps it to 
a graph theoretical problem.

Using edge dynamics, we are still 
interested in identifying the minimum set of 
driver nodes, because to control an edge in a 
network one has to control the switchboard 
node from which the edge originates. Here 
we can exploit the mathematical duality 
between edge dynamics on a network and 
nodal dynamics on its line graph (in which 
each node corresponds to an edge, and 
each edge to a length-two directed path, 
in the original network). By applying the 
minimum-inputs theorem directly to the 
line graph, we obtain the minimum number 
of driver nodes for the line graph, which 
corresponds to the minimum number 
of driven edges in the original network. 
However, this procedure does not imply 
that the number of driver nodes in the 
original network is also minimized. Nepusz 
and Vicsek mapped this control problem 
to a graphical problem and developed an 
efficient algorithm to identify the minimum 

number of driver nodes for arbitrary 
complex networks with edge dynamics.

Nodal and edge dynamics are most easily 
compared by looking at the different roles 
played by highly connected nodes, or hubs, 
which reflect the duality between the two 
problems. In the case of node control, hubs 
do not typically act as drivers, because by 
sending their neighbours a common signal 
they create symmetries that restrict the state 
space that the system can explore. For link 
control the situation is reversed, because 
neighbours can receive different signals and 
so hubs can exploit their many connections. 
This results in fewer key nodes being 
needed to control the network, although 
the number of corresponding edges (and 
thus control signals) may be large4. Nepusz 
and Vicsek showed that heterogeneous and 
sparse networks have more controllable 
edge dynamics than homogeneous and 
dense networks do, in striking contrast 
to the case for nodal dynamics5. Positive 
correlation between in- and out-degrees 
of nodes enhances the controllability of 
edge dynamics, but it does not affect the 
controllability of nodal dynamics at all9. 
Conversely, adding self-edges to individual 
nodes enhances the controllability of nodal 
dynamics9, but leaves the controllability of 
edge dynamics unchanged.

We conclude with two remarks. First, 
the controllability issue in networks is akin 
to the question of choosing the locations of 
flaps, ailerons and engines on an airplane, 
or similarly of designing safe system 
architecture in a nuclear plant. Once these 
key choices have been made, the design 
of actual control algorithms is still purely 
within the realm of control theory. Whether 
network tools can also help in this process 
for large complex systems will be an exciting 
research direction for the years to come.

Finally, a particularly interesting 
application of this result may arise in the 
context of evolution or development. It has 

been suggested that evolution may be based 
on ancient, optimized components whose 
connections are the main target of natural 
selection10,11. This point of view is based on 
extensive biological evidence of conserved 
core processes facilitating evolutionary 
variation10, and independently on the need 
to preserve stability and functionality when 
aggregating stable functional subsystems11. 
From this perspective, controllability of 
evolution and development is primarily a 
link-based concept, potentially giving our 
current understanding of edge4 and nodal5 
dynamics profound new implications.� ❐
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Network control. Controlling links is very different from controlling nodes.
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