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Interpretation of the clinical pathogenic effects of variants is cru-
cial for the advancement of precision medicine. However, our 
ability to understand the functional and biological consequences 

of genetic variants identified by human genome sequencing proj-
ects is limited. Many computational approaches can identify only 
a small proportion of pathogenic variants with the high confidence 
required in clinical settings. Human genome sequencing studies 
have reported potential mutation–disease associations with the 
functional regions altered by somatic mutations, such as molecular 
drivers in cancers1,2. However, many important issues in the field 
remain unclear, including the phenotypic consequences of different 
mutations within the same gene and the same mutation across dif-
ferent cell types.

Recent efforts using systematic analyses of 1,000–3,000 mis-
sense mutations in Mendelian disorders3,4 and ~2,000 de novo 
missense mutations in developmental disorders5 demonstrate that  
disease-associated alleles commonly alter distinct PPIs rather than  

grossly affecting the folding and stability of proteins3,4. Network- 
based approaches provide new insights into disease–disease6 and 
drug–disease7–9 relationships within the human interactome. 
Nevertheless, the functional consequences of disease mutations 
on the comprehensive human interactome and their implications 
for therapeutic development remain understudied. Several studies  
have suggested that protein structure-based mutation enrich-
ment analysis offers a potential tool for identification of pos-
sible cancer driver genes10, such as hotspot mutation regions in 
three-dimensional (3D) protein structures11–14. Development of 
new computational and experimental approaches for the study of 
functional consequences of mutations at single–amino acid residue 
resolution is crucial for our understanding of the pleiotropic effects 
of disease risk genes, and offers potential strategies for accelerating 
precision medicine15,16.

In this study, we investigated the network effects of disease- 
associated mutations at amino acid resolution within the 3D  
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macromolecular interactome of structurally resolved and com-
putationally predicted PPI interfaces. We provide evidence for  
widespread perturbations of PPIs in human diseases caused by both 
germline and somatic mutations identified in large-scale sequenc-
ing studies.

Results
Widespread network perturbations by germline mutations. To 
investigate the effects of disease-associated mutations at amino 
acid resolution on a PPI network, we constructed a structurally 
resolved human protein–protein interactome network by assem-
bling three types of experimentally validated binary PPIs with 
experimental or predicted interface information: (1) PPIs with 
crystal structures from the RCSB protein data bank17, (2) PPIs 
with homology modeling structures from Interactome3D18 and 
(3) experimentally determined PPIs with computationally pre-
dicted interface residues from Interactome INSIDER19 (Methods). 
In total, we collected 121,575 PPIs (edges or links) connecting 
15,046 unique proteins (nodes). We found that disease-associated 
mutations from the Human Gene Mutation Database (HGMD)20 
were significantly enriched in PPI interfaces of the respective 
proteins compared to variants identified in individuals from the 
projects 1000 Genomes21 (P < 2.2 × 10−16, two-tailed Fisher’s test;  
Fig. 1a) and ExAC22 (P < 2.2 × 10−16, two-tailed Fisher’s test; Fig. 1a). 
We found the same level of enrichment for mutant interface resi-
dues with both crystal structures (Supplementary Fig. 1) and within 
the high-throughput systematic interactome identified by (unbi-
ased) yeast two-hybrid (Y2H) screening assays23 (Supplementary 
Fig. 2). Figure 1b reveals the global view of network perturbations 
in disease-associated germline mutations from the HGMD20. For 
example, multiple disease-associated gene products, including p53, 
LMNA, CFTR, HBA and GJB2, have PPIs altered by multiple inter-
face, disease-associated mutations.

Proprotein convertase subtilisin/kexin type 9 (PCSK9), first dis-
covered by human genetic screening studies in 2003, has generated 
great interest in genomics-informed drug discovery for cardiovascu-
lar disease24. We therefore investigated whether the PCSK9 allele car-
rying a p.Ser127Arg substitution perturbs the interaction between 
PCSK9 and LDLR (low-density lipoprotein receptor protein)  
(Fig. 1c). We performed molecular dynamics simulations 
(Supplementary Fig. 3) to predict whether the binding affin-
ity between p.Ser127Arg PCSK9 and LDLR would be increased 
(545 kJ mol–1) compared with wild type (WT) (691 kJ mol–1; 
Supplementary Fig. 4). We focused on the interaction between the 
beta-propeller region of LDLR and the noncovalently-bound pro-
peptide (residues 61–152) of PCSK9. The binding affinity (ΔΔG) 
of p.Ser127Arg relative to that of WT is predicted to change by 
−14 kJ mol–1, suggesting that the strength of interaction with LDLR 
is perturbed by the p.Ser127Arg substitution on PCSK9.

We next focused on the propeptide of PCSK9, where the total 
change in binding affinity by p.Ser127Arg is predicted to be altered 
by −211 kJ mol–1 (Supplementary Fig. 4). The region centered on 
the p.Ser127Arg substitution is key to the increased binding affin-
ity in the mutant PCSK9 (ref. 25). While interactions between the 
propeptide of PCSK9 and the beta-propeller of LDLR do exist in the 
WT system, they do not involve the region surrounding residue 127 
(Supplementary Fig. 4). Much of the change in binding affinity, on 
a per-residue basis, is due to a steep increase in electrostatic interac-
tion energy with the substituted residue (Arg127), which accounts 
for the greatest contribution to the significant change in overall 
binding affinity (Supplementary Fig. 4). For example, a number of 
arginine residues in the alpha-helix (Leu88-Arg105) distal to the 
interface between the beta-propeller of LDLR and the propeptide 
are predicted to exhibit an increase in their binding affinity due to 
an increase in electrostatic interactions. This increase in electro-
static interactions stems from a reduction of roughly 15 Å in the 

distance between the center of the helix and the interaction region, 
measured from the alpha-carbon of Arg86 in PCSK9 and Arg385 
of LDLR (Supplementary Fig. 5). For the PCSK9 p.Ser127Arg–
LDLR complex, the combination of the extra length of the side 
chain, in addition to the charged guanidinium functionality, would 
allow interactions with the side chains of Arg385 and His386 on 
LDLR. In summary, combining human interactome analyses and 
computational biophysical modeling supports an interaction per-
turbation model for p.Ser127Arg, in agreement with our notion of 
PPI-perturbing alleles.

PPI-perturbing alleles in somatic mutations. We next turned to 
an investigation of the somatic mutation load between PPI interface 
and noninterface regions. We inspected 1,750,987 missense somatic 
mutations from 10,861 tumor exomes across 33 cancer types from 
The Cancer Genome Atlas (TCGA) in the interface regions of 
121,575 PPIs. We found a significantly higher somatic mutation bur-
den at PPI interfaces compared to noninterfaces across all 33 cancer 
types (P < 2.2 × 10−16, two-tailed Wilcoxon test; Fig. 2a). For breast 
cancer, the average missense mutation burden leading to amino acid 
substitutions is 20 per 1 million residues in interface regions, signifi-
cantly higher than that in noninterface regions (4 per 1 million, five-
fold enrichment; P < 2.2 × 10−16, two-tailed Wilcoxon test). We also 
found the same trend where somatic mutations are highly enriched in 
both crystal-structure-derived (Supplementary Fig. 6) and compu-
tationally inferred (Supplementary Fig. 7) PPI interfaces compared 
to noninterface regions across all 33 cancer types. We further per-
formed the same mutation burden analysis in structurally resolved, 
unbiased PPIs. We also found a higher mutation load at the inter-
face residues of the physical human interactome using co-crystal 
structures only (Supplementary Fig. 8) and unbiased, binary PPIs 
identified by Y2H with available co-crystal-structure-derived inter-
faces and computationally predicted interfaces (Supplementary 
Fig. 9), supporting the robustness of the analysis. We investigated 
the cumulative distribution of deleterious amino acid substitu-
tions between PPI interface and noninterface regions. Deleterious 
substitutions quantified by both SIFT (Fig. 2b) and PolyPhen-2  
(Fig. 2c) scores are significantly enriched at PPI interfaces com-
pared to noninterfaces. Thus, widespread interaction perturbations 
caused by somatic mutations may contribute to tumorigenesis. 
Following this analysis, we next pursued the identification of puta-
tive oncoPPIs (also termed significantly mutated edges) by sys-
tematically exploring the mutation burden between PPI interfaces 
versus noninterfaces across 10,861 tumor exomes.

Systematic identification of oncoPPIs. Based on the observation that 
somatic missense mutations are enriched at PPI interfaces (Fig. 2a) and 
that mutations at PPI interfaces are more likely to be deleterious than 
those at the noninterfaces (Fig. 2b,c), we prioritized putative oncoPPIs 
using a binomial statistical model (Methods). In total, we investigated 
the somatic mutations in 10,861 tumor–normal pairs across 33 cancer 
types/subtypes in the TCGA database. All abbreviations for 33 cancer 
types/subtypes are provided in Methods. We selected putative oncoP-
PIs using subject matter expertise based on a combination of factors: 
(1) strength of the prediction (a higher adjusted P value is shown in 
Supplementary Data 1); (2) availability of crystal-structure-derived 
PPI interfaces; (3) novelty of the predicted oncoPPIs; and (4) avail-
ability of sufficient patient survival and pharmacogenomics data for 
meaningful evaluation. Applying these criteria resulted in 470 puta-
tive oncoPPIs among a total of 15,357 PPIs (Supplementary Fig. 10 
and Supplementary Data 1). Among 470 pan-cancer putative oncoP-
PIs, we highlighted 13 with documented crystal-structure-based 
interface mutations, including KEAP1–KFE2L2, SPOP–H2AFY and 
FGF1–FGFR3 (Extended Data Fig. 1).

We next investigated putative oncoPPIs identified across 33 indi-
vidual cancer types. In total, we found 2,708 unique, putative  
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oncoPPIs across 29 cancer types, including 2,338 heterodimers 
and 370 homodimers, that reached a level of significance (Fig. 2d;  
FDR q < 0.05; Methods and Supplementary Data 1), with at 
least one putative oncoPPI (Supplementary Fig. 11). Among the 
10,861 TCGA tumor samples analyzed, 4,405 (40%) harbor at  
least one putative oncoPPI. Figure 3 illustrates the landscape  
of putative oncoPPIs across the 33 cancer types. The top five  
oncoPPIs (heterodimers) with known structural information are 

BRAF–MAP2K1, PIK3R1–PIK3CA, TP53–EP300, TP53–TP53BP2 
and KEAP1–NFE2L2. Among these complexes, 3D structural 
analysis revealed that p.Val600Glu on BRAF may perturb the 
BRAF–MAP2K1 interaction (Supplementary Fig. 12), consistent 
with a previous study26. The specific PPI-perturbing somatic muta-
tions among these leading oncoPPIs are p.Arg132His in IDH1, 
p.Val600Glu in BRAF, p.His1047Arg in PIK3CA, p.Gln209Leu in 
GNA11 and p.Phe133Leu in SPOP (Fig. 3). In summary, many 
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known driver mutations are commonly located in regions that are 
part of the interaction interface of one or the other binding partner 
proteins, indicating the potential for widespread interaction pertur-
bation in human cancers (Fig. 3).

Pharmacogenomic landscape of PPI-perturbing mutations. We 
next examined whether putative oncoPPIs can predict drug responses 
(Fig. 4a). We used analysis of variance (ANOVA) to determine  
whether there is a significant difference in the response of spe-
cific cell lines by comparing the PPI interface-mutated and WT 

interface groups. Utilizing analysis of the drug pharmacogenomic 
profiles of >1,000 cancer cell lines from the Genomics of Drug 
Sensitivity in Cancer (GDSC) database (Methods), we found that 
interface-predicted mutations of oncoPPIs are highly correlated with 
sensitivity or resistance to multiple therapeutic agents (Supplementary 
Data 2). Figure 4b shows that oncoPPIs correlate with the sensitivity 
or resistance of 66 clinically investigational or approved anticancer 
agents. For example, we found that PPI-perturbing mutations in  
SNAI1 and ACTN2 were responsible for resistance to foretinib  
(a c-Met and VEGFR2 kinase inhibitor27; Supplementary Fig. 13), 
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consistent with a previous study28. In addition, PPI-perturbing  
mutations in GNAI2 (encoding G protein subunit alpha-I2 (ref. 29)) 
that directly disrupt interactions with RGS20 and TRIP6 were asso-
ciated with resistance to several chemotherapeutic agents, including 
gemcitabine and tamoxifen (Supplementary Fig. 13).

We further investigated their correlation with anticancer 
drug response by analyzing the data from in vivo compound 
screens between ~1,000 patient-derived tumor xenograft (PDXs)  
models and 62 medications30. In total, we found 2,808 significant  
correlations (P < 0.05, ANOVA; Methods) between 49 medications 

and 1,411 putative oncoPPIs (Fig. 4c). Amino acid substitutions in  
vinculin (VCL), located at the interface between VCL and fragile X 
mental retardation syndrome–related protein 1 (FXR1) are signifi-
cantly correlated with resistance to encorafenib, an FDA-approved 
BRAF inhibitor for the treatment of melanoma31, compared to 
patients without VCL–FXR1-perturbing mutations. Importantly, 
FXR1–BRAF fusion has been found in glioma32,33, which may 
explain the correlation of the response to encorafenib with interface 
substitutions that disrupt VCL–FXR1 (Fig. 4d). Interface substitu-
tions that disrupt BRAF–MAP2K1 were significantly associated 
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Fig. 3 | Landscape of protein–protein interaction–perturbing mutations across 33 cancer types. Circos plot displaying significant putative oncoPPIs 
(Methods) harboring a statistically significant excess number of missense mutations at PPI interfaces across 33 cancer types. Putative oncoPPIs with 
various significance levels (Methods) are plotted in the three inner layers. The links (edges, orange) connecting two oncoPPIs indicate two cancer 
types sharing the same oncoPPIs. Selected significant oncoPPIs and their related mutations are plotted on the outer surface. The length of each line is 
proportional to –log10(P). All oncoPPIs and PPI-perturbing mutations are freely available at https://mutanome.lerner.ccf.org/.
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with response to combination therapy with ribociclib (a CDK4/
CDK6 inhibitor34) and encorafenib in PDX models, suggesting 
potential pharmacogenomic biomarkers for rational development 
of combination therapy in cancer. In summary, PPI-perturbing 
mutations offer potential as pharmacogenomic biomarkers in both 
cancer cell lines and PDX models, an observation that warrants  
further detailed investigation using preclinical and clinical data.

PPI-perturbing alleles in histone H4 complex. We next investi-
gated the correlation between patient survival and oncoPPIs. We 
found that interface substitutions of p53 or arginine-rich splicing 
factor 1 (SRSF1) (ref. 35) in p53–SRSF1 were significantly associ-
ated with poor survival rate in bladder urothelial carcinoma (BLCA) 
(P = 6.1 × 10−3, log-rank test), breast invasive carcinoma (BRCA) 
(P = 6.4 × 10−4) and colon adenocarcinoma (COAD) (P = 7.2 × 10−3) 
among 33 cancer types (Extended Data Fig. 2 and Supplementary  
Fig. 14). Nevertheless, mutations in p53 alone are modestly associated 
with poor survival rate in BRCA (P = 0.03, log-rank test) but are not 
associated with BLCA survival rate (P = 0.79) and COAD (P = 0.11; 
Extended Data Fig. 2). Amino acid substitutions of histone acetyl-
transferase p300 (EP300) (ref. 36) or nuclear transcription factor Y 
subunit beta (NFYB) at the interfaces of EP300–NFYB significantly 
correlated with poor survival rate in melanoma patients (P = 0.019, 
log-rank test; Supplementary Fig. 15). For COAD, PPI-perturbing 
mutations in plasminogen (PLG) or mothers against decapentaple-
gic homolog 4 (SMAD4) are highly correlated with poor survival  
(P = 0.0025, log-rank test; Supplementary Fig. 15).

Histone H4, encoded by HIST1H4A, is one of the five main 
histone proteins involved in gene regulation and chromatin struc-
ture37. Figure 5a shows multiple potential PPI-perturbing mutations 
in histone H4 in complex with death-associated protein 6 (DAXX), 
H3 histone family member 3A (H3F3A) and centromere protein A 
(CENPA). We found a high mutation burden of the histone H4 
complex in multiple cancer types (Fig. 5b), especially for BLCA, 
head and neck squamous cell carcinoma (HNSC), lung adenocarci-
noma (LUAD), lung squamous cell carcinoma (LUSC) and uterine 
corpus endometrial carcinoma (UCEC). Figure 5c illustrates sev-
eral selected H4 interface substitutions of the histone H4 complex. 
Interface substitutions of HIST1H4A or H3F3A (encoding histone 
H3.3 (ref. 38)) in H3.3–H4 interfaces are significantly associated with 
poor survival in COAD (Fig. 5e) and response to multiple antican-
cer drugs, including paclitaxel and BMS-754807 (Fig. 5f). We found 
multiple interface substitutions between histone H4 and DAXX 
that are potentially involved in tumorigenesis and drug responses  
(Fig. 5c). For example, PPI-perturbing mutations in histone H4 that 
disrupt the DAXX interaction are significantly associated with poor 
survival in COAD and LUSC, and are further associated with drug 
responses in those malignancies (Fig. 5e,f). Thus, PPI-perturbing 
alleles in the histone H4 complex provide another example of clini-
cally relevant mechanisms of PPI-perturbing alleles.

Experimental validation of PPI-perturbing alleles. To test PPI- 
perturbing alleles experimentally, we selected and cloned 13 high- 
confidence oncoPPIs by using our previously established binary 
interaction mapping vectors39. We selected 23 somatic missense 

mutations (Supplementary Table 1) across these 13 oncoPPIs for 
experimental validation, using subject matter expertise based on a 
combination of factors: (1) interface mutations with crystal-structure 
evidence; (2) PPI-perturbing mutations significantly correlated with 
drug response and patient survival; and (3) mutations affecting the 
interaction that can be detected by Y2H assay39.

We first tested the impact of these mutations on the corre-
sponding 13 oncoPPIs using our well-established Y2H assay3,39.  
As shown in Fig. 6, among 23 tested mutations, 17 (74%) led to  
loss of PPIs or reduced the detected effects of PPIs while six (26%) 
maintained those interactions predicted to be affected by the  
mutation (Supplementary Table 1). Our experimental results  
are consistent with the PPI test results of disease mutations in  
our previous study3, in which approximately two-thirds of dis-
ease mutations were PPI perturbing. Importantly, this previous  
study did not identify the location of the mutation in the protein 
tertiary structure.

Among the tested alterations, p.Met146Lys (Fig. 6b) in arachido-
nate 5-lipoxygenase (ALOX5) disrupts its interaction with MAD1L1, 
a mitotic spindle assembly checkpoint protein. Both ALOX5 and 
MAD1L1 have been reportedly involved in tumorigenesis and/or 
tumor progression of several cancer types40,41. Another example is 
the p.Arg382Trp alteration in homeobox and leucine zipper encod-
ing (HOMEZ) that alters the interaction between HOMEZ and 
early B-cell factor 1 (EBF1). We performed Zdock protein dock-
ing analysis42 of the effect of p.Arg382Trp on the HOMEZ–EBF1  
interaction (Supplementary Fig. 16). We computationally con-
structed the homology structure of the HOMEZ and EBF1 com-
plexes from the monomer structures of the HOMEZ homeobox 
domain (Protein Data Bank (PDB): 2ECC) and EBF1 IPT/TIG 
domain (PDB: 3MQI), respectively. According to the docking  
structure model with the best predicted score (Fig. 6c and 
Supplementary Fig. 16), Arg382 is located at the binding inter-
face of HOMEZ–EBF1, forming one salt bridge and one hydrogen 
bond with Asp285 and Asn286 in EBF1, respectively. Interestingly, 
p.Arg382Trp disrupts the salt bridge and hydrogen bond and fur-
ther alters surface topography due to the difference in both size and 
shape between Arg and Trp, which contributes to the binding free 
energy loss of the protein complex. By superimposing a homeobox 
DNA complex structure onto the HOMEZ–EBF1 complex model 
(Supplementary Fig. 16), we observed that HOMEZ contains two 
distinct binding interfaces of its homeobox domain that interact 
simultaneously with DNA and EBF1. Although p.Arg382Trp dis-
rupts the interaction of HOMEZ and EBF1, it may also alter pro-
tein–DNA interaction.

We next focused on the RHOA–ARHGDIA interaction because 
it has an available co-crystal structure (Supplementary Fig. 17). In 
the RHOA–ARHGDIA system, the p.Pro75Ser substitution causes 
a shift in the secondary structure of the region. Using molecular 
mechanics/Poisson–Boltzmann surface area (MM/PBSA) to calcu-
late interaction enthalpy, we observed a difference of >100 kJ mol–1 
incident in the mutant protein, indicating a significant loss of inter-
action energy inherent in the mutation and consistent with our 
experimental data (Fig. 6b,d). RHOA is a well-known oncogene 
product in which it was reported that multiple mutations were 

Fig. 4 | Pharmacogenomics landscape of protein–protein interaction–perturbing alleles. a, Experimental design of pharmacogenomics predicted by 
PPI-perturbing alleles. b, Drug responses evaluated by putative oncoPPIs harboring a statistically significant excess number of missense mutations at PPI 
interfaces, following a binomial distribution across 66 selected anticancer therapeutic agents in cancer cell lines. Each node denotes a specific oncoPPI. Node 
size denotes P values computed by two-tailed ANOVA (Methods). Effect size was quantified by Cohen’s statistic using the difference between two means 
divided by a pooled s.d. for the data. Node color denotes three different types of PPI (Fig. 1b). c, Drug responses evaluated by oncoPPIs in the PDX models. 
d,e, Highlighted examples of drug response (the area under the dose–response curve (AUC)) to encorafenib and its combinations (LEE011 and encorafenib) 
predicted by interface mutations on VCL–FXR1 (d; n = 3 mutated cell lines; n = 73 WT cell lines) and BRAF-MAP2K1 (e; n = 14 mutated cell lines; n = 19 
WT cell lines). P values were calculated by using two-tailed ANOVA. Data are represented as a boxplot with an underlaid violin plot in which the middle line is 
the median, the lower and upper edges of the box are the first and third quartiles, the whiskers represent IQR × 1.5 and beyond the whiskers are outlier points.
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probably pathogenic in various types of cancer, including lym-
phoma and adenocarcinoma43. Its interaction with ARHGDIA is 
important for the inactivation and stabilization of RHOA. Loss of 

the RHOA–ARHGDIA interaction could, therefore, lead to tumor 
cell proliferation and metastasis44,45. These observations suggest 
that p.Pro75Ser is a potential functional PPI-perturbing mutation 
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that alters the RHOA–ARHGDIA interaction in cancer cells. In 
summary, our experimental assays and computational biophysical 
analyses identify network perturbations by PPI-perturbing muta-
tions that can potentially lead to the discovery of new pathogenic 
molecular mechanisms.

Functional validation of PPI-perturbing alleles. We next turned 
to functional validation using two selected systems: (1) the RXRA 
p.Ser427Phe alteration at the RXRA–PPARG interface and (2) the 
ALOX5 p.Met146Lys alteration at the ALOX5–MAD1L1 inter-
face (Fig. 6b). RXRA is a member of the nuclear receptor super-
family and plays critical roles in pathologic processes of multiple 
diseases, including oncogenesis46. Our oncoPPI analysis revealed 
that p.Ser427Phe in RXRA plays a potential role in tumorigenesis, 
including pancreatic carcinogenesis (Fig. 7a). To demonstrate an 
oncogenic role of p.Ser427Phe in pancreatic cancer, we transfected 
the WT and p.Ser427Phe mutant RXRA into pancreatic cancer cells 
(Supplementary Fig. 18). We observed that p.Ser427Phe promoted 
tumor cell growth and clone formation in two pancreatic cancer cell 
lines, Capan-2 and SW1990 (Fig. 7b–d). It has been reported that 
p.Ser427Phe in RXRA simulated peroxisome proliferator-activated 
receptors (PPARs) to drive urothelial proliferation, and that a 
PPAR-specific antagonist can block mutant RXRA-driven cell prolifer-
ation47. To test this hypothesis, Capan-2 and SW1990 cells transfected 
with WT or RXRA p.Ser427Phe were treated with GSK0660, a potent 
PPARβ/δ antagonist. As shown in Fig. 7e, p.Ser427Phe-expressing 
Capan-2 cells are modestly susceptible to GSK0660 (half-maximal 
inhibitory concentration (IC50) = 1.11 μM) as compared to empty 
vector (EV, IC50 = 8.41 μM) or WT (IC50 = 2.51 μM)-transfected  
cells. A similar result was also obtained using the SW1990 cell line 
(EV, IC50 = 6.99 μM; WT: IC50 = 2.84 μM; p.Ser427Phe, IC50 = 1.80 μM; 
Fig. 7e,f). Taken together, these data show that the RXRA–PPARG- 
perturbing alteration p.Ser427Phe promotes pancreatic cancer cell 
growth and sensitivity to PPAR antagonists.

ALOX5, a key enzyme in the biosynthesis of leukotrienes48, plays 
roles in tumorigenesis and tumor progression49. Our Y2H assay 
showed that p.Met146Lys in ALOX5 (Fig. 7g) perturbed the physical 
interaction between ALOX5 and MAD1L1. To examine the func-
tional role of p.Met146Lys in ALOX5 in cancer cell proliferation, 
we generated ALOX5 p.Met146Lys using standard site-directed 
mutagenesis (Supplementary Fig. 19). We next expressed WT and 
p.Met146Lys mutant ALOX5 in two lung cancer cell lines, H1299 
and H460 (Supplementary Fig. 19). As shown in Fig. 7h–j, we found 
that p.Met146Lys significantly promotes cell proliferation and clone 
formation of cell lines H1299 and H460. Taken together, these 
experiments provide proof-of-concept evidence for the functional 
consequences of PPI-perturbing alleles in cancer.

Discussion
Previous studies have demonstrated that the human protein–protein 
interactome provides a powerful network-based tool to quantify  
disease–disease6 and drug–disease7–9 relationships; however, the 
functional network consequences of disease-associated mutations 
remain largely unknown. In this study, we developed a human 
structurally resolved macromolecular interactome framework for 

comprehensive identification of PPI-perturbing alleles in human 
disease. We showed widespread PPI network perturbations altered 
by both disease-associated germline and somatic mutations. Using a 
binomial statistical model, we identified 470 putative oncoPPIs har-
boring a statistically significant excess number of missense muta-
tions at PPI interfaces (oncoPPIs) in pan-cancer analysis using a 
combination of factors, and validated the selected predictions exper-
imentally. We demonstrated that network-predicted oncoPPIs were 
highly correlated with patient survival and drug resistance/sensitiv-
ity in human cancer cell lines, and also in patient-derived xenografts, 
offering actionable prognostic markers and pharmacogenomic bio-
markers for potential clinical guidance. Taken together, these find-
ings provide network-medicine-based, fundamental pathogenic 
molecular mechanisms and offer potential disease-specific targets 
for genotype-informed therapeutic discovery.

Our systematic network strategy provides a practical approach to 
identification of the potential, functional consequences of candidate 
disease alleles by perturbing PPI networks. PPI-perturbing muta-
tions are significantly associated with poor survival rate in cancer 
patients, while mutations in the gene alone did not typically cor-
relate with patient survival (Extended Data Fig. 2). PPI-perturbing 
mutations were significantly correlated with drug sensitivity or resis-
tance, but mutations in a gene alone typically failed to predict drug 
responses (Fig. 4 and Supplementary Fig. 20). We found that pro-
teins involved in oncoPPIs do not directly overlap with known drug 
targets (Supplementary Fig. 21). One possible explanation is that 
oncoPPIs influence downstream or upstream-network-associated 
protein targets of these drugs. In support of this view, we found that 
known drug targets did overlap with the neighbors of oncoPPIs 
(Supplementary Fig. 21) rather than with oncoPPIs directly, support-
ing the network proximity analysis of drug–disease relationships in 
the human interactome, as demonstrated in previous studies8,9.

We found that gene expression of oncoPPIs is unlikely to be 
cancer type specific (Supplementary Fig. 22). This conclusion is 
consistent with our recent human interactome analysis showing 
no significant enrichment for PPIs between causal disease proteins 
and tissue-specific expressed proteins39. One possible explanation 
for this finding is that PPIs are more likely to be altered by somatic 
coding mutations that alter physical binding affinity. For example, 
we found that p.Met146Lys specifically perturbed the interac-
tion between ALOX5 and MAD1L1 (Fig. 6b and Supplementary  
Fig. 19). Previous studies have shown low or no correlation between 
protein expression or activity and gene expression50. There are, 
of course, many factors that influence the correlation between 
protein expression or activities and messenger RNA abundance, 
including post-translational modification of proteins, RNA editing  
and others50,51.

We acknowledge several potential limitations in the current study. 
Different tissue collection protocols and sequencing approaches, 
and variant calling and filtering approaches from TCGA, may  
generate the potential risk of a significant false-positive rate. 
Although we found the same level of enrichment for mutant inter-
face residues using both crystal structures and analysis of the 
high-throughput systematic interactome identified by unbiased 
Y2H assays23, some potential noise in the computationally inferred 

Fig. 5 | Protein–protein interaction–perturbing alleles in histone H4 complex. a, A highlighted PPI-perturbing mutation network for the histone H4 
complex in human cancer. b, Somatic mutation landscape of histone H4 complex across 18 selected cancer types with the highest somatic mutation rate. 
c, Selected PPI-perturbing mutations (highlighted in red) in the histone H4 complex. d, Interface mutations (highlighted in red) between histone H4 and 
DAXX. e, Interface mutations (MUT) of histone H4 complex are significantly correlated with survival in COAD and LUSC. P values were calculated by 
two-tailed log-rank test. f, Interface mutations of histone H4 complex are significantly correlated with anticancer drug responses, including paclitaxel 
(n = 16 mutated cell lines, n = 411 WT cell lines), BMC-754807 (an IGF-1R inhibitor) (n = 32 mutated cell lines, n = 895 WT cell lines) and EHT-1864 (a Rho 
inhibitor) (n = 36 mutated cell lines, n = 928 WT cell lines). P values were calculated by using two-tailed ANOVA. The data are represented as a boxplot 
with an underlaid violin plot in which the middle line is the median, the lower and upper edges of the box are the first and third quartiles, the whiskers 
represent IQR × 1.5 and beyond the whiskers are outlier points. c,d, Protein 3D images were prepared by PyMOL.
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PPI interfaces may exist. Although we validated WT PPIs in Y2H 
assays using the PacBio sequencing approach (Methods), several 
WT PPI pairs (such as RHOA–ARHGDIA) showed a weak Y2H 
signal. Further experimental validation is, therefore, needed in  
the future.

We compiled a comprehensive, structurally resolved interactome 
network based on our sizeable efforts. Importantly, the incompleteness  

of the human interactome may limit coverage for unknown dis-
ease proteins or mutations. In the future, our approach may help 
direct facilitatation of biological interpretation of mutations and 
inform disease-driven PPI allele identification in multiple ongoing 
and future human genome sequencing efforts, including TopMed52, 
PVDOMICS53, International Cancer Genome Consortium54, All of 
Us55 and many others. Taken together, this work suggests that we 
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can minimize the translational gap between genomics and clini-
cal medicine, and provide a clear path from network medicine to 
precision medicine in the process. If broadly applied, this human 
3D interactome network analysis framework could prioritize 
actionable prognostic and pharmacogenomic biomarkers for per-
sonalized treatments and offer disease-allele-specific targets for 
genotype-informed protein–protein inhibitor discovery.
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Methods
Building the human protein–protein interactome. To build a comprehensive 
human binary protein–protein interactome, we assembled three types of 
experimental evidence: (1) PPIs with crystal structures from the RCSB protein 
data bank (https://www.rcsb.org)17; (2) PPIs with homology modeling structures 
from Interactome3D (v.2017.12, https://interactome3d.irbbarcelona.org)18; and (3) 
experimentally determined binary PPIs with computationally predicted interface 
residues from Interactome INSIDER (v.2018.3, http://interactomeinsider.yulab.
org)19. For crystal structures and homology models of PPIs, any residue that is 
at the surface of a protein (≥15% exposed surface) and whose solvent-accessible 
surface area decreases by ≥1.0 Å2 in complex is considered to be at the interface. 
In addition, we also assembled computationally predicted interfaces using the 
ECLAIR classifier for experimentally identified PPIs from Interactome INSIDER19. 
Genes were mapped to their Entrez ID based on the NCBI database (https://www.
ncbi.nlm.nih.gov)56, as well as on their official gene symbols based on GeneCards 
(http://www.genecards.org/). The resulting human binary interactome constructed 
in this way includes 121,575 PPIs (edges or links) connecting 15,046 unique 
proteins (nodes). All PPIs are experimentally validated PPIs derived from different 
types of experimental evidence, as described in the original study19.

Collection and preparation of genome sequencing data. We downloaded the 
tumor–normal pairwise somatic mutation data for patients from TCGA GDC 
Data Portal (https://portal.gdc.cancer.gov)57 using the R package TCGA-assembler 
(v.2, http://www.compgenome.org/TCGA-Assembler/)58 for 33 cancer types/
subtypes. These 33 major cancer types include acute myeloid leukemia (LAML), 
adrenocortical carcinoma (ACC), BLCA, BRCA, cervical carcinoma (CESC), 
cholangiocarcinoma (CHOL), colon and rectal adenocarcinoma (COAD/
READ), diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), 
glioblastoma (GBM), HNSC, kidney chromophobe carcinoma, kidney renal 
clear cell carcinoma, kidney papillary cell carcinoma, low grade glioma, liver 
hepatocellular carcinoma (LIHC), LUAD, LUSC, mesothelioma (MESO), ovarian 
serous cystadenocarcinoma (OV), pancreatic ductal adenocarcinoma (PAAD), 
paraganglioma and pheochromocytoma (PCPG), prostate adenocarcinoma 
(PRAD), sarcoma (SARC), rectal adenocarcinoma (READ), skin cutaneous 
melanoma (SKCM), stomach adenocarcinoma (STAD), thyroid carcinoma 
(THCA), testicular germ cell cancer (TGCT), thymoma (THYM), UCEC, uterine 
carcinosarcoma (UCS) and uveal melanoma (UVM).

Disease-associated missense mutations were downloaded from HGMD (http://
www.hgmd.cf.ac.uk/ac/index.php)20. Population-based missense mutations were 
obtained from the databases 1000 Genomes (phase 3, 2,504 individuals, https://
www.internationalgenome.org)21 and ExAC (v.0.3.1, 60,706 individuals, https://
gnomad.broadinstitute.org)22. We downloaded putative somatic mutations for 
1,001 cancer cell lines from GDSC (http://www.cancerrxgene.org/). The list of 
genomic variants found in these cell lines by whole-exome sequencing was also 
obtained from GDSC. The sequencing variants were identified by comparison to 
a reference genome. The resulting variants were then filtered using data from the 
NHLBI GO Exome Sequencing Project and the 1000 Genomes Project to remove 
sequencing artifacts and germline variants59. In addition, we used ANNOVAR 
(https://doc-openbio.readthedocs.io/projects/annovar/en/latest/)60 to map these 
somatic mutations to identify the corresponding amino acid changes via RefSeq 
ID. The functional impact of nonsynonymous single-nucleotide variants was 
measured by both SIFT61 and PolyPhen-2 scores62. For this analysis, we obtained 
SIFT and PolyPhen-2 scores from the ANNOVAR annotation database. We then 
converted RefSeq ID to UniProt ID using a UniProt ID mapping tool (http://www.
uniprot.org/uploadlists/).

Significance test of PPI interface mutations. A PPI in which there is significant 
enrichment in interface mutations in one or the other of the two protein-binding 
partners across individuals will be defined as an oncoPPI. For each gene gi and 
its PPI interfaces, we assume that the observed number of mutations for a given 
interface follows a binomial distribution, binomial (T, pgi

I
), in which T is the total 

number of mutations observed in one gene and pgi
I

 is the estimated mutation 
rate for the region of interest under the null hypothesis that the region was not 
recurrently mutated. Using length (gi) to represent the length of the protein 
product of gene gi, for each interface, we computed the P value—the probability of 
observing >k mutations around this interface out of T total mutations observed in 
this gene—using the following equation:

P X≥kð Þ ¼ 1� P X<kð Þ ¼ 1�
Xk�1

x¼0

T
x

 
pxgi 1� pgi

� T�x ð1Þ

in which pgi ¼ length of interface
lengthðgiÞ

I

. Finally, we set the minimal P value across all the 
interfaces in a specific protein as the representative P value of its coding gene gi, 
denoted P(gi). The significance of each PPI is defined as the product of P values of 
the two proteins (gene products). All P values were adjusted for multiple testing 
using the Bonferroni correction.

Cancer cell line annotation. We downloaded the annotation file of the cancer cell 
lines: molecular and drug-response data availability, microsatellite instability (MSI) 

status, growth properties and media, and TCGA and COSMIC tissue classification, 
from GDSC (http://www.cancerrxgene.org/). The details of this annotation have 
been described previously59.

Drug sensitivity data. Natural log half-maximal inhibitory concentration (IC50) 
and the area under the dose–response curve (AUC) values for all screened cell 
line–drug combinations were downloaded from GDSC. After applying the data 
preparation procedure described in a previous study59, a total of 251 drugs tested 
in 1,074 cancer cell lines with 224,510 data points were used. In addition, we 
collected anticancer drug response data from in vivo compound screens between 
~1,000 PDXs and 62 treatments across six indications30.

ANOVA model. For each drug, we constructed a drug-response vector consisting 
of n IC50 values from treatment of n cell lines. Next, a drug-response vector was 
modeled as a linear combination of the tissue of origin of the cell lines, screening 
medium, growth properties and the status of a genomic feature:

IC50 ¼ Mutþ TissueþMediumþMSI ð2Þ

where Mut is mutations and MSI is microsatellite instability (including  
small indels).

In this study, considering the data sparsity, we performed only pan-cancer 
analysis. A genomic feature–drug pair was tested only if the final drug-response 
vector contained at least three positive and at least three negative cell lines. The effect 
size was quantified through Cohen’s d statistic using the difference between two 
means divided by a pooled s.d. for the data. The resulting P values were corrected by 
the Benjamini–Hochberg method63. All statistical analyses were performed using the 
R package v.3.2.3 (http://www.r-project.org/) and two-tailed tests.

Pathway enrichment analysis. We used ClueGO64 for enrichment analysis of 
genes in the canonical Kyoto Encyclopedia of Genes and Genomes pathways. 
A hypergeometric test was performed to estimate statistical significance, and 
all P values were adjusted for multiple testing using the Bonferroni correction 
(adjusted P values).

Cloning of disease mutations. We generated the predicted disease mutants by 
implementing a site-directed mutagenesis pipeline as described in the pairwise 
test for identification of perturbed interactions section (described below). For 
each mutation, two ‘primary PCRs’ were performed to generate DNA fragments 
containing the mutation, and a ‘stitch PCR’ was performed to fuse the two 
fragments to obtain the mutated ORF. For primary PCRs, two universal primers 
(E2E forward and E2E reverse) and two ORF-specific internal forward and reverse 
primers were used. The two ORF-specific primers contained the desired nucleotide 
change. The fragments generated by the primary PCRs were fused by the stitch 
PCR using the universal primers to generate the mutated ORF. The final product 
was a full-length ORF containing the mutation of interest. All mutated ORFs were 
cloned into a Gateway donor vector, pDONR223, by BP reaction followed by 
bacterial transformation and selection using spectinomycin. Two single colonies 
were picked for each transformant. All picked colonies were transferred into 
pDEST-AD and pDEST-DB by LR reaction followed by bacterial transformation 
and selection using ampicillin. The plasmids were then extracted, purified and 
transformed into Y8930 yeast strain for pairwise testing.

Pairwise test for identification of perturbed interactions. The pairwise test was 
performed in 96-well format. The ORFs were inoculated in SC-Leu and SC-Trp 
media overnight and mated in YEPD media the following day. All WT and mutant 
alleles in pDEST-DB were mated with their interacting partner in pDEST-AD 
(DB-ORFxAD-ORF), as well as in pDEST-AD but without insertion of the ORF 
(DB-ORFxAD-empty). After incubation at 30 °C overnight, mated yeasts were 
transferred to SC-Leu-Trp medium to select for diploids. The following day, 
diploid yeasts were spotted on SC-Leu-Trp-His + 1 mM 3AT and SC-Leu-Trp 
medium, to control for mating success.

After 3 days of growth at 30 °C, each spot on plates was scored with a growth 
score ranging from 0 to 4, 0 being no growth, 1 being one or two colonies, 2 
being some colonies, 3 being many colonies and 4 being a large consolidated 
spot in which no individual colonies could be distinguished. Pairs for which the 
SC-Leu-Trp spot was scored as 3 or 4, and the 3AT spot was valid (yeasts were 
spotted and no contamination or other experimental failure), were considered 
as being successfully tested. A successfully tested pair can be further classified 
as positive, negative or autoactivator depending on the growth scores of 
DB-ORFxAD-ORF and DB-ORF-AD-empty on SC-Leu-Trp-His + 1 mM 3AT 
plates. If the growth score of DB-ORFxAD-ORF was 0, the pair was classified as 
negative; if the growth score of DB-ORFxAD-ORF – DB-ORFxAD-empty was ≥2, 
the pair was classified as positive (Supplementary Table 1); otherwise the pair was 
classified as autoactivator. Pairs were scored blindly with respect to their identity 
using in-house software.

In parallel, we made lysates of all SC-Leu-Trp plates to perform duplex PCR 
using barcoded AD/DB and Term primers, followed by pooling and sequencing 
with the PacBio Sequel system. We used the SMRT tools (v.5.1.0) and ISO-SEQ 
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(v.3.1) software packages to analyze raw sequencing results. The pipeline includes 
five main steps to obtaining high-quality sequences: (1) generation of circular 
consensus (CCS) reads; (2) demultiplexing and primer removal; (3) classification 
of full-length CCS reads; (4) clustering of full-length non-chimeric reads; and 
(5) polishing of cluster sequences. Polished sequences were then aligned to ORF 
sequences using BLAST. Colonies with the exact full-length sequence as expected 
(with, and only with, the expected mutations, fully covered by polished reads) were 
considered as sequence confirmed.

Only pairs (1) successfully tested, (2) classified as positive or negative, (3) for 
which the WT allele was classified as positive with growth score ≥2 and (4) that were 
sequence confirmed were considered for all further analysis. An interaction was 
considered perturbed by an allele if its growth score was ≤1 and that was less than the 
growth score of the corresponding WT pair by at least 2. Otherwise, an interaction 
was considered partially perturbed by an allele if the growth score of the WT pair was 
greater than the growth score for that interaction with the respective allele by 1.

System construction for molecular simulation. Crystal structures (PDBs: 
1CC0 and 3M0C) were accessed from the RCSB PDB protein data bank. 
Co-crystalized ions were retained from the structure. Nonterminal missing loops 
were reconstructed, where required, using Modeller9.18 within UCSF Chimera. 
Protonation states for charged residues were determined using PROPKA 2.0. 
Mutations and preparation of the system for molecular dynamics simulation 
were accomplished using the quick molecular dynamics simulator module of 
CHARMM-GUI. Following a processing step, including the addition of hydrogens 
and patching the terminal regions, a water box using TIP3 water molecules with 
edges at least 12 Å from the protein was added. The system was neutralized to a 
NaCl concentration of 150 mM.

Simulation parameters. Molecular dynamics simulations were carried out using 
GROMACS (v.2018.2)7 on the Pitzer computing cluster at the Ohio Supercomputer 
Center. Initial minimizations of the systems were carried out using steepest descent 
until the energy of the system reached machine precision. Following minimization, 
an NVT (i.e., constant number of particles, volume and temperature) equilibration 
step with positional restraints of 400 kJ mol−1 nm−2 on backbone atoms and 
40 kJ mol−1 nm−2 on side chain atoms was run using a timestep of 2 fs for 
500,000 steps, yielding 1 ns of equilibration. Finally, NPT (i.e., constant number 
of particles, pressure and temperature) dynamics were run with no positional 
restraints for 400 ns using the same 2-fs timestep from equilibration, after which 
the system was determined by its root-mean-squared deviation (RMSD) to be 
reasonably well equilibrated.

Hydrogen atoms were constrained using the a linear constraint solver 
algorithm implemented in GROMACS (v.2018.2)7. Temperature coupling to 
310.15 °K was done separately for protein and water/ions using a Nose–Hoover 
thermostat and a 1-ps coupling constant. For NPT dynamics simulation, isotropic 
pressure coupling to 1 bar was done using a Parrinello–Rahman barostat with a 
coupling constant of 5.0 ps and compressibility of 4.5 × 10–5 bar−1. The pair list 
cutoff was constructed using the Verlet scheme, updated every 20 evaluations with 
a cutoff distance of 12 Å. Particle mesh Ewald electrostatics were chosen to describe 
coulombic interactions using the same cutoff as in the pair list. Van der Waals 
forces were smoothly switched to zero between 10 and 12 Å using a force-switch 
modifier to the cutoff scheme.

Postprocessing and RMSD plots were generated using standard GROMACS 
tools. MM/PBSA energies were calculated on 1,001 frames over the final 100 ns 
of each simulation using g_mmpbsa, which uses an adaptive Poisson–Boltzmann 
solver to determine polar and nonpolar contributions to binding energy. Briefly, 
binding free energy can be expressed as

ΔGbinding ¼ Gcomplex � Gprotein1 þ Gprotein2
� �

ð3Þ

where complex refers to the protein–protein complex and proteins 1 and 2 
the respective proteins in the complex. The individual free energies for each 
component above are determined by

Gx ¼ EMMh i þ Gsolvationh i � TS ð4Þ

where EMM is vacuum molecular mechanics energy, Gsolvation the solvation energy 
and TS the entropic contribution. Entropic contributions were not included owing 
to computational cost and evidence that the inclusion of the entropy term does 
not always improve the accuracy of calculations. Molecular mechanics energy and 
solvation energy can be further broken down into their component energies:

EMM ¼ Ebonded þ Enonbonded ¼ Ebonded þ EvdW þ Eelec ð5Þ

Gsolvation ¼ Gpolar þ Gnonpolar ð6Þ

Here Ebonded is 0, since we used the single trajectory approach. EvdW and Eelec are 
the van der Waals and electrostatic contributions to vacuum binding, respectively, 
while Gpolar and Gnonpolar are electrostatic and nonelectrostatic contributions to 
solvation energy, respectively.

Expression vector construction. pCDNA3-RXRA was generated using 
standard molecular cloning methods. pcDNA3-ALOX5 was kindly provided 
by C. D. Funk (Department of Biochemistry, Queen’s University, Canada). 
Site-directed mutagenesis were performed using the KOD-Plus-Mutagenesis Kit 
(TOKOYO, catalog no. SMK-101) according to the manufacturer’s instructions. 
RXRA p.Ser427Phe and ALOX5 p.Met146Lys were generated from vectors 
pCDNA3-RXRA and pcDNA3-ALOX5, respectively. All generated plasmids were 
confirmed by Sanger sequencing.

Cell culture and transfection. Human cancer cell lines (Capan-2, SW1990, 
H1299 and H460) were obtained from the American Type Culture Collection. 
All cells were cultured in DMEM (Gibco, catalog no. 11995040) supplemented 
with 10% fetal bovine serum (FBS; Gibco, catalog no. 10099-141) and maintained 
under an atmosphere containing 5% CO2 at 37 °C. All cell lines were negative for 
mycoplasma. Pancreatic cancer cell lines (Capan-2 and SW1990) were transfected 
with EV, pcDNA3-RXRA WT or pcDNA3-RXRA p.Ser427Phe, and lung cancer 
cell lines (H1299 and H460) were transfected with EV, pcDNA3-ALOX5  
WT or pcDNA3-ALOX5 p.Met146Lys using Lipofectamine 2000 (Invitrogen, 
catalog no. 11668019).

Cell proliferation assay. Cell viability was determined using CellTiter 96 
AQueous Non-Radioactive Cell Proliferation Assay (MTS; Promega, catalog no. 
G5421) according to the manufacturer’s recommendation. In brief, treated cancer 
cells were seed into 96-well plates at a density of 3,000–5,000 cells per well and 
incubated for the indicated time. Next, 20 μl per well of combined phenazine 
methosulfate solution (PMS) was added and absorbance was recorded at 490 nm 
using the microplate reader Synergy 2 (BioTek).

Immunoblotting. Cells were lysed with RIPA lysis buffer (20 mM Tris-HCl, 
37 mM NaCl2, 2 mM EDTA, 1% Triton-X, 10% glycerol, 0.1% SDS and 0.5% 
sodium deoxycholate) with protease and phosphatase inhibitors (Roche). 
Protein samples were quantified (Pierce BCA Protein Assay Kit, Thermo Fisher 
Scientific), subjected to SDS–polyacrylamide gel electrophoresis and transferred to 
polyvinylidene difluoride membranes. Membranes were incubated with primary 
antibodies, including RXRA (1:1,000; Proteintech, catalog no. 21218-1-AP) 
and ALOX5 (1:1,000; Abclonal, catalog no. A2877) and subsequent secondary 
antibody: horseradish peroxidase–conjugated Affinipure Goat Anti-Rabbit 
IgG(H+L) (1:3,000; Proteintech, catalog no. SA00001-2).

Colony formation assay. Transfected cells were seeded into six-well plates at 
a density of 3,000 cells per well in 2 ml of DMEM medium supplemented with 
10% FBS. The medium was replaced every 3 days. After 14 days, viable colonies 
were fixed in 4% paraformaldehyde and stained with 0.1% crystal violet at room 
temperature. Formed colonies were photographed with an inverted fluorescence 
microscope (Olympus).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All mapping interface mutations, network-predicted oncoPPIs across pan-cancer 
and 33 individual cancer types, the human protein–protein interactome and 
predicted drug responses and patient survival analysis are freely available at the 
websites https://mutanome.lerner.ccf.org/ and https://github.com/ChengF-Lab/
oncoPPIs. Publicly available databases used in the present study include the 
RCSB protein data bank (https://www.rcsb.org), Interactome3D (v.2017.12, 
https://interactome3d.irbbarcelona.org), Interactome INSIDER (v.2018.3, http://
interactomeinsider.yulab.org), GeneCards (http://www.genecards.org/), NCBI 
(https://www.ncbi.nlm.nih.gov), TCGA GDC Data Portal (https://portal.gdc.
cancer.gov), HGMD (http://www.hgmd.cf.ac.uk/ac/index.php), 1000 Genomes 
(phase 3, 2,504 individuals, https://www.internationalgenome.org), ExAC database 
(v.0.3.1, 60,706 individuals, https://gnomad.broadinstitute.org) and GDSC (http://
www.cancerrxgene.org/).

Code availability
All codes written for and used in this study are available from https://github.com/
ChengF-Lab/oncoPPIs.
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Extended Data Fig. 1 | The 13 selected pan-cancer oncoPPIs with crystal structure-based PPI interface mutations. The images were prepared by PyMOL 
(https://pymol.org/2/) using the Protein Data Bank (PDB) IDs (highlighted in figures) downloaded from PDB database (https://www.rcsb.org). Structural 
views of all oncoPPIs in pan-cancer and individual cancer types/subtypes are freely available: https://mutanome.lerner.ccf.org/.
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Extended Data Fig. 2 | Survival analyses of p53-SRSF1 PPI perturbing-mutations and p53 mutations alone. Three exemplary cancer types, including 
bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), and colon adenocarcinoma (COAD), are illustrated. Survival analyses of 
p53-SRSF1 PPI perturbing-mutations across other cancer types/subtypes are provided in Supplementary Fig. 14. The p-value (P) was computed by log-rank 
test. All oncoPPI-predicted survival analyses for 33 cancer types/subtypes are freely available at the following website: https://mutanome.lerner.ccf.org/.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We downloaded the tumor-normal pairwise somatic mutation data for patients from TCGA GDC Data Portal using R package TCGA-
assembler (v2, http://www.compgenome.org/TCGA-Assembler/). Population-based missense mutations were 
obtained from the 1000 Genomes Project (phase 3, 2,504 individuals) and from ExAC database (v0.3.1, 60,706 individuals). We 
downloaded putative somatic mutations for 1,001 cancer cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC, http:// 
www.cancerrxgene.org/). The resulting variants were then filtered using the data from NHLBI GO Exome Sequencing Project and the 
1000 Genomes Project to remove sequencing artefacts and germline variants. We assembled three types of experimental PPI evidences: 
(1) PPIs with crystal structures from the RCSB protein data bank (https://www.rcsb.org), (2) PPIs with homology modeling structures from 
Interactome3D (https://interactome3d.irbbarcelona.org), and (3) experimentally determined binary PPIs with computationally predicted 
interface residues from Interactome INSIDER (v2018.3, http://interactomeinsider.yulab.org).

Data analysis We used ANNOVAR (v4.0, https://doc-openbio.readthedocs.io/projects/annovar/en/latest/) to map somatic mutations in the protein 
sequences for identifying the corresponding amino acid changes via RefSeq ID. The functional impact of nonsynonymous SNVs (single 
nucleotide variants) was measured by both SIFT and PolyPhen-2 scores. We then converted RefSeq ID to UniProt ID using a UniProt ID 
mapping tool (http://www.uniprot.org/uploadlists/). The effect size was quantified through Cohen’s d statistic using the difference 
between two means divided by a pooled standard deviation for the data. All statistical analyses were performed using the R package 
(v3.2.3, http://www.r-project.org/). We used ClueGO for enrichment analysis of genes in the canonical KEGG pathways. Molecular 
dynamics simulations were carried out using GROMACS v2018.2 on the Pitzer computing cluster at the Ohio Supercomputer Center. 
Hydrogen atoms were constrained using the a LINear Constraint Solver (LINCS) algorithm implemented in GROMACS (v2018.2) We used 
SMRT tools (v5.1.0) and ISO-SEQ (v3.1) software packages to analyze raw sequencing results. The protein 3D images were prepared by 
PyMOL (https://pymol.org/2/). Violin plots were performed by R/ggplot2. 
 
Code availability. All codes written for and used in this study are available from https://github.com/ChengF-Lab/oncoPPIs and other 
codes are available from the corresponding author upon reasonable request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data availability. All mapping interface mutations, network-predicted oncoPPIs across pan-cancer and 33 individual cancer types, the human protein-protein 
interactome, and predicted drug responses and patient survival analysis are freely available at the website: https://mutanome.lerner.ccf.org/ and https://
github.com/ChengF-Lab/oncoPPIs. Publicly available databases used in the present study include the RCSB protein data bank (https://www.rcsb.org), 
Interactome3D (v2017.12, https://interactome3d.irbbarcelona.org), Interactome INSIDER (v2018.3, http://interactomeinsider.yulab.org), GeneCards (http://
www.genecards.org/), NCBI (https://www.ncbi.nlm.nih.gov), TCGA GDC Data Portal (https://portal.gdc.cancer.gov), HGMD (http://www.hgmd.cf.ac.uk/ac/
index.php), 1000 Genomes (phase 3, 2,504 individuals, https://www.internationalgenome.org), ExAC database (v0.3.1, 60,706 individuals, https://
gnomad.broadinstitute.org), GDSC (http://www.cancerrxgene.org/). 
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Sample size Sample size was based on the number of available, qualified tumor samples for this study.

Data exclusions No data were excluded in our analysis.

Replication All attempts at replications are successful for all computational work in our manuscript. Three independent experiments (replications) were 
performed in cell-based functional assays.

Randomization Randomization is not relevant to our computational analysis.

Blinding Blinding is not relevant to our computational analysis.
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Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms
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Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Antibodies: RXRA (1:1000, Proteintech, Cat. 21218-1-AP) and ALOX5 (1:1000, Abclonal, Cat. A2877). Secondary antibody: HRP-

conjugated Affinipure Goat Anti-Rabbit IgG(H+L) (1:3000, Proteintech, Cat. SA00001-2).

Validation All antibodies were validated by the manufacturers prior to being used. RXRA: http://www.ptgcn.com/products/RXRA-
Antibody-21218-1-AP.htm, 
ALOX-5: https://abclonal.com.cn/catalog/A2877, 
Secondary antibody: 
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Human cancer cell lines (Capan-2, SW1990, H1299 and H460) were obtained from American Type Culture Collection (ATCC).

Authentication All cell lines were authenticated by STR profiling before used

Mycoplasma contamination All cell lines were negative for mycoplasma.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in the study.
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