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a b s t r a c t

Information routing is one of the most important problems in large communication
networks. In this paper we propose a novel routing strategy in which the optimal paths
between all pairs of nodes are chosen according to a cost function that incorporates degrees
of nodes in paths. Results on large scale-free networks demonstrate that our routing
strategy ismore efficient than the shortest path algorithm and the efficient routing strategy
proposed by Yan et al. [Phys. Rev. E 73, 046108 (2006)]. Furthermore our routing strategy
has strong robustness against cascading failure attacks on networks.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The underlying structures of many interconnected networks, such as the Internet, transportation networks, and power
grids, have been well studied in past decades [1–3]. The next critical topic concerned with these infrastructural networks is
how to improve searching or routing efficiency and avoid traffic congestion [4–14]. Traditionally information or goods are
transported along the shortest pathswhich have the least numbers of hops orminimal sums of linkweights if the network is
weighted [15,16]. This type of path usually passes through hub nodes that are highly connected, but are relatively few in real
networks. When traffic flow is heavy, there will be transport delay or congestion in hub nodes, and this type of congestion
will propagate to other nodes in the network [16]. This problem is the starting point of current research on traffic dynamics
in networks. Two behaviors related to transport dynamics in networks are oftenmeasured in research: average delivery time
and network capacity [4,5]. Although the two properties are different, they connect to each other, and usually improving
one will decrease the other [4]. Most of the current work is devoted to improving network capacity, andmaking the average
delivery time as low as possible.

The network capacity will be improved by increasing the node capacity for delivery [16], or making the structure more
homogeneous such as removing the most loaded edges in networks [17,18]. However, these strategies usually cost more
and are impractical. In fact, dynamics on networks can be homogenized even when the network itself is heterogeneous,
which is an approach that has been previously successfully applied to the enhancement of synchronization in networks [19].
Therefore, most of the studies of traffic dynamics focus on finding better routing strategies. The efficiency of information
routing strongly depends on howmuch the strategies utilize the information about network structure and traffic conditions.
A single random walk is inefficient since it uses no information about the network [20]. Using part of the network, such as
degree of neighboring nodes [6,13,21], queue length of neighboring nodes [7], geographical location of nodes [22], or local
betweenness centrality [23], the routing strategy can greatly improve the network capacity. Using full information of the
network, transport capacity can be improved further. Danila et al. provide a simple heuristic algorithm [4], which makes
the traffic load distribution even, by recursively minimizing the maximum node betweenness in networks. Although this
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algorithm can improve the network capacity, it is only practical for small networks due to the high computational cost. Yan
et al. [5] obtain an efficient routing strategy which redistributes traffic load in central nodes to other non-central nodes. This
strategy improves the network capacity more than 10 times. The network capacity can still be improved further since the
load distribution in Yan’s strategy is not completely homogeneous.

Robustness is a hot topic in the literature on complex networks [2]. Results for robustness show that in the Internet
and the World Wide Web the giant component persists for high rates of random node removal. However, if the nodes
are removed intentionally, the size of the fragments broken off increases rapidly [24,25]. In power grids and computer
networks, a small fraction of the node removal can trigger a breakdown of the whole network which is called cascade
failure attacks [26,27]. However, much of the current work on network robustness is devoted to the topological impact of
attack and failures, and there is little research available on robustness of a routing strategy in networks. In this paper we
propose a novel routing strategy based on a cost function which incorporates the degrees of nodes in the paths considered,
and then we test the robustness of our routing strategy under cascade failure attacks. The outline of this paper is as follows:
in Section 2 we introduce the traffic dynamics. In Section 3 we give our routing strategy. In Section 4 we test the efficiency
of our routing strategy. Then in Section 5 we investigate the robustness of our routing strategy. Finally, Section 6 is devoted
to the conclusion.

2. Traffic dynamics

Many large communication networks such as the Internet are scale-free [2], so we focus on scale-free networks and
generate the underlying networks by using the famous Barabási–Albert (BA) model [28]. This model is defined with two
steps:

(1) growth: at the beginning, there arem0 isolated nodes. At each time step, a new node is added into the network, and this
new node will connect tom (m ≤ m0) different nodes which are already present in the network.

(2) preferential attachment: node iwill link to the new node with probability P(ki) = ki/
∑

j=1 kj, where ki is the degree of
node i.

This model will generate a scale-free network with t + m0 nodes andmt edges in t steps. To study the traffic dynamics, we
set each node in the scale-free network to be both host and router. An infinite queue with first in first out (FIFO) discipline
is allocated to each node in the network. At each step, there are R information packets generated in the network. The source
node and destination node of each packet are randomly allocated. Once a packet arrives at the destination node, the packet
is removed from the system. If the current node where a packet arrives is not the destination, the packet will be delivered to
a neighboring node according to some routing strategy used in the network. The maximum number of packets a node can
deliver is set to be the constant C = 5.

3. Routing strategy

The major problemwith traffic dynamics is traffic congestion when the traffic loads exceed the capacity of the transport
systems. On the Internet, when all the packets follow the shortest paths to their destinations, they easily cause the overload
of the heavily connected routers as a result of their limited capacity for delivering packets. Although traffic congestion is
caused by the heterogeneous structure of the network, it is not necessary to make any changes to the network structure.
We can homogenize the dynamics in the network and this is successfully applied to the enhancement of synchronization in
networks [19]. When considering the delay of the delivery, the shortest paths in networks are not the best paths to deliver
packets. Much research has been dedicated to finding the optimal paths for transport systems. Yan et al. provide an efficient
routing (ER) strategy [5], in this ER strategy, for any path from node i to node j, as i, α0, α1, . . . , αn, j, they denote:

ψ(µ) =

n−
m=0

kµm, (1)

where µ is a tunable parameter, and km is the degree of node m. The efficient routing path between node i and node j
corresponds to the route that makes the sum ψ(µ) a minimum. Simulation results demonstrate that if all nodes have the
same delivery capacity in the network, then the efficient paths are the routes with the minimum sums of degrees of nodes
in the paths. The idea of the ER strategy is that, in order to make the load distribute evenly, packets should avoid the heavily
linked nodes since they are prone to congestion. The ER strategy increases the network capacity greatly. However, the ER
strategy could still be improved. In Eq. (1) we can see that km is a critical element in the cost function of the ER strategy.
According to this cost function the paths with high-degree nodes are ignored in scale-free networks, since the costs of these
paths are significantly larger than that of the other paths. As a result high-degree nodes are not part of the optimal paths
and they waste their delivery capability.

We propose an improved routing strategy called an active routing (AR) strategy. In the AR strategy, we set a cost function
as follows:

φ(β) =

n−
m=0

(log(log(km)))β , (2)



868 C.-L. Pu et al. / Physica A 391 (2012) 866–871

Fig. 1. The relationship between critical value RC and β in the AR strategy on scale-free networks with different size. The average node degree is ⟨k⟩ = 6.
The power-law distribution parameter is γ = 3. The result is the average over 10 independent runs.

where β is a tunable parameter, 0 < β < ∞, km is the degree of node m in the path. The optimal path we choose for
delivering packets between each node pair is the one which makes the cost function (Eq. (2)) a minimum. When β = 0,
we recover the shortest path (SP) strategy. In Eq. (2) we use log(log(km)) instead of km in the cost function which makes
the costs of paths in networks more comparable. As a result, high-degree nodes also have an opportunity to be part of the
optimal paths to deliver packets. From the global view of thewhole network, the load of the AR strategywill distributemore
evenly than that of the ER strategy. So far Eq. (2) is the best cost function we can obtain.

4. Performance of the AR strategy

Generally there are two properties that are often measured in the study of traffic dynamics on networks. One is the
network capacitywhich indicates themaximumnumber of packets that a network canhandle [4,5]. This property is reflected
in a phase transition of the traffic dynamics. Arenas et al. defined an order parameter [29] to describe the phase transition
as follows:

η(R) = lim
t→∞

1
R

⟨∆W ⟩

∆t
, (3)

where∆W = W (t+∆t)−W (t),W (t) is the total number of packets in the network at time t , ⟨· · ·⟩means average over time
windows t . There is a critical value RC , belowwhich∆W ≈ 0, η ≈ 0, whichmeans the number of generated packets and the
removed packets are balanced. In this case, the traffic flow on the network is free and steady, but when R > RC , η > 0, and
this indicates the number of packets generated in the network is more than the amount the network can handle. Therefore,
RC is a goodmeasurewhich reflects the network handling capacity. Bymeasuring RC , we can find out the optimal β in the AR
strategy. In Fig. 1 when β = 1.5, RC reaches the maximum value, and as the network size increases, the peak also increases.
In the following discussion, we set β = 1.5 in our strategy. In this network, the maximum RC values under different routing
strategies are RSP

C = 33, RER
C = 435, and RAR

C = 534. The network capacity with the ER strategy is approximately 13 times
larger than the one with the SP strategy, and the network capacity with the AR strategy is approximately 16 times larger
than the onewith the SP strategy. These results show that our routing strategy can improve the network capacitymore than
the other two strategies.

The other property is the average path length Lave when the traffic is in the free flow state [5]. Lave demonstrates how fast
a network can transport packets, and it is calculated by averaging over the route lengths of all the optimal paths chosen from
the corresponding routing strategy. In Fig. 2, we show the relationship between Lave and network size N in different routing
strategies. Although LARave in the AR strategy is much larger than the one in the SP strategy, it maintains the small-world
property [30] for LARave ∼ lnN , and LARave is smaller than the one in the ER strategy.

To further study the advantage of the AR strategy, we show the load distribution in our strategy and compare it with the
SP and ER strategies. The load is estimated by betweenness centrality which is well studied in social networks [31]. Similarly
as in Ref. [5], the betweenness centrality in the AR strategy is as follows: for a given node degree k,

B(k) =
1

N(k)

−
ki=k

−
s≠t

δst(i), (4)

δst(i) =


1 if vs → vt pass through vi,
0 otherwise, (5)
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Fig. 2. The relationship between Lave and network sizeN . The average node degree is ⟨k⟩ = 6. The power-law parameter is γ = 3. The result is the average
over 50 independent runs.

where N(k) denotes the number of nodes with degree k. The relationship between load B and degree k is shown in Fig. 3. In
the SP strategy B(k) ∼ k1.7. This means the large-degree nodes bearmore load than the small-degree nodes. Considering the
handling capacities of all the nodes are the same and fixed, large-degree nodes will congest first when the traffic is heavy,
and this congestion will spread all over the network. In the ER strategy, the traffic load is redistributed from large-degree
nodes to small-degree nodes. Since there are more small-degree nodes than large-degree nodes, the total handling ability
of small-degree nodes is much larger than that of the large-degree nodes. As a result, the network can bear much more
load in the ER strategy than in the SP strategy. The load distribution in the ER strategy is much more even than the one in
the SP strategy, but it can still be improved if we increase the loads on high-degree nodes properly. In the AR strategy, the
load distribution is more homogeneous, and this is why the network capacity in our strategy is higher than in the other two
strategies.

5. Robustness of the AR strategy

Here we investigate robustness of routing strategies against cascade failure attacks on scale-free networks. The load
Bi(t) on node i at time t is the total number of the optimal paths passing through i at time t . The optimal paths are chosen
according to the routing strategies studied. In the traffic model above we set the node capacity to be the same and fixed in
all of the nodes, but here we assume the capacity Ci of node i to be proportional to its initial load Bi(0) [26]:

Ci = cBi(0), i = 1, 2, . . . ,N. (6)

c ≥ 1 is the tolerance parameter of the network. For a given network, we assume every ordered pair of nodes exchanges one
packet at each time step, and packets are transmitted along the optimal paths computed by the routing strategy studied. If a
nodewith a small load is removed, there are no significant changes in the balance of loads, so cascade failures are unlikely to
occur in the network. Here we focus on the cascade failures triggered by the removal of the node with the largest load in the
network. Initially, we remove the nodewith the largest load. This removal changes the network topology and destroys some
of the optimal paths. Then all the optimal paths are recomputed, and therefore the load distribution changes. If the loads
of some nodes increase and become larger than the capacities of those nodes, these overloaded nodes will fail which may
result in subsequent failures. The process will stop when there is no such node in which the load is larger than the capacity,
and then we can measure some properties of the network. Here we investigate robustness of different routing strategies
on scale-free networks generated by the static model [32]. We record the size of the giant component S1 after the cascade
failure, and denote the ratio between the sizes of the giant component after and before the cascade failure as H ,

H = S1/S0. (7)

Also we calculate the network efficiency [2], and this is the average of the reciprocal of the length of the optimal path which
is as follows:

E =
1

N(N − 1)

−
i≠j

1
Lij
, (8)

where N is the size of the network, Lij is the optimal path length between node i and node j.
Fig. 4 shows the simulation results. Both H and E increase rapidly with the c at the initial time, and then they tend to be

stable. When c is large enough, H ≈ 1, and E is fixed. In this case, there is no cascade failure. When c is small, H < 1, and
E is smaller than the one when there is no attack on the network, for this case cascade failure occurs. Also we see from the
picture the AR and ER strategies are more robust against cascade failure than the SP strategy. If c is fixed, H and E in the AR
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a b
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Fig. 3. The relationship between B and k for (a) SP, (b) ER, and (c) AR strategies on the scale-free network. The network size is N = 1500. The average node
degree is ⟨k⟩ = 6. The power-law parameter is γ = 3.

a

b

Fig. 4. (a) H vs. c and (b) E vs. c for three different strategies on the scale-free network. The network size is N = 1000. The average node degree is ⟨k⟩ = 6.
The power-law parameter is γ = 3.

and ER strategies are larger than in the SP strategy when there is a cascade failure in the network, and the AR strategy is
slightly better than the ER strategy. From Fig. 4, for example, when c = 1.25,H and E in the AR strategy are about 48% larger
than the ones in the SP strategy, and H and E in the ER strategy are about 43% larger than the ones in the SP strategy.
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6. Conclusions

In summary we describe a new routing strategy based on our cost function to choose the optimal paths for delivering
information packets in networks. In our routing strategy, the traffic load is distributed relatively evenly when compared to
the case of the SP and ER strategies. As a result, the network capacity is higher in our strategy. Also, the robustness of our
routing strategy against cascade failure ismuch better than of the SP strategy, and slightly better than that of the ER strategy.
The routing table for our routing strategy is obtained by a small modification of the Dijkstra’s algorithm. In the future, we
will improve our routing strategy by introducing real-time information of load on nodes in the routing strategy. Also wewill
test the robustness of our routing strategy under other types of attacks.
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