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Abstract

To better understand the health implications of personal genomes, we now face a largely

unmet challenge to identify functional variants within disease-associated genes. Functional

variants can be identified by trans-species complementation, e.g., by failure to rescue a

yeast strain bearing a mutation in an orthologous human gene. Although orthologous com-

plementation assays are powerful predictors of pathogenic variation, they are available for

only a few percent of human disease genes. Here we systematically examine the question

of whether complementation assays based on paralogy relationships can expand the num-

ber of human disease genes with functional variant detection assays. We tested over 1,000

paralogous human-yeast gene pairs for complementation, yielding 34 complementation

relationships, of which 33 (97%) were novel. We found that paralog-based assays identified

disease variants with success on par with that of orthology-based assays. Combining all

homology-based assay results, we found that complementation can often identify patho-

genic variants outside the homologous sequence region, presumably because of global

effects on protein folding or stability. Within our search space, paralogy-based complemen-

tation more than doubled the number of human disease genes with a yeast-based comple-

mentation assay for disease variation.

Author summary

Functional complementation assays of human disease-associated gene variants can reveal

many more human disease variants at high confidence than current computational

approaches, even using highly-diverged model organisms. However, this has generally

only been possible for a minority of human disease genes for which orthologous comple-

mentation is known in the relevant model organism, so that alternative assays are urgently

needed. Here we show that complementation relationships can be found for many addi-

tional human disease genes by exploiting paralogous human-yeast gene relationships, and
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that disease variant identification using paralogy-based assays performs on par with

orthology-based assays.

Introduction

As a result of rapid developments in sequencing technology, we are identifying many rare vari-

ants in individual human genomes [1]. To fully exploit this resource, we must be able to rap-

idly identify which of the many variants in each individual are most likely to be functional and

disease-causing.

Yeast remains an extremely useful model organism for studying gene functions [2, 3],

genetic interactions [4], protein-protein interactions [5–7], and genotype-phenotype relation-

ships [8, 9]. The scale of experiments in yeast ranges from individual assays to high-throughput

genome-wide experiments [10–12]. Of the ~6000 genes in yeast only about 15% are completely

un-annotated with a function, and even for these genes there are clues from a wide range of

large-scale experiments. Core cellular biology is well conserved between yeast and humans,

with ~60% of yeast genes having human homologs and 87% of yeast protein domains being

present in a human protein [13]. Functional complementation assays using model organisms

can allow us to, for example, assess the functions of all possible missense variants of a gene in

advance of their first appearance in the human population [14–16].

Assays of functional variation using complementation are constructed via two steps. First, a

complementation relationship is identified, such that expression of a wild-type human gene

product rescues phenotypic defects in a yeast strain lacking the cognate function. Second, the

pathogenicity of genetic variants is assessed by comparing their ability to complement with

that of the wild-type allele. Previously, we developed yeast-based functional complementation

assays to evaluate the functional effects of missense variants in human disease-associated genes

[17]. We and others have shown that yeast-based functional complementation assays can effi-

ciently reveal the functionality of human genetic variants [15]. Indeed, our previous work

showed that yeast-based functional complementation assays achieved three times the sensitiv-

ity of computational methods for detecting disease variants at the same high threshold of pre-

cision [17]. Although complementation assays have been largely restricted to orthologous

human-yeast gene pairs, a few examples of paralogous complementation are known. For

example, the human gene RAC1 can complement the yeast ras1− strain, suggesting functional

similarity between these genes [18]. In another example, a recent systematic screen found that

the human gene SEC61A1, implicated as a host factor for influenza, HIV and dengue viruses

[19], can complement loss of the yeast gene RFT1 [15]. Thus, the set of human disease genes

with complementation-based functional variation assays could potentially be expanded via

paralog relationships [18].

There are over 130,700 ‘disease-causing’ variants according to the most stringent annota-

tion in the Human Gene Mutation Database (HGMD; as of November 2015), corresponding

to 3535 unique disease genes [20]. Of these disease genes, 972 have an annotated ortholog in

Saccharomyces cerevisiae, while another 762 genes have at least one paralog. (Except where

noted, we follow the practical operating definition of “paralog” as any homolog not annotated

as an ortholog.) If we include less stringent HGMD disease gene annotations (see Methods),

the number of disease genes with a yeast ortholog rises to 1869, with an additional 1087 having

a paralog.

Orthologs are (by definition) diverged by speciation rather than by duplication within a

species, and it is generally believed that they are more likely to serve in the same biological role
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across species. In contrast, it is generally thought that paralogs—homologs that diverged by

duplication within the genome of a species—are more likely to have evolved a distinct or spe-

cialized function. However, it is quite possible for orthologs to acquire different properties and

for paralogs to retain the same function [21]. Although complementation assays based on

human-yeast ortholog pairs can accurately predict pathogenic variants [17], it is unclear

whether similar assays based on paralogs are as useful in predicting pathogenic variants.

Therefore, we assessed the ability of paralogous complementation assays to detect pathogenic

variation using an objective panel of disease and non-disease variants.

Results

Many complementation relationships exist for human-yeast paralogs

To expand the set of human disease genes with a functional complementation assay, we identi-

fied human disease genes, each having one or more essential yeast paralogs for which a condi-

tional mutant was available. Because protein domains are distinct functional and structural

units in a protein, because variants within a particular domain have a heightened chance of

affecting structural and functional properties of the proteins in which they appear [22–24],

and because domain-based mutational studies have proven useful in elucidating the functional

and disease effects of variants [22, 25, 26], we also used protein domain annotations to select

human-yeast paralogs for which all domains in the yeast protein could be found in the human

protein. This yielded 314 human disease genes with a suitable yeast paralog to test. Given that

a human gene may have multiple yeast paralogs, this resulted in a larger search space of 1060

human-yeast paralog pairs (S1 Table).

For each of the 314 human genes in our search space, we obtained an open reading frame

(ORF) from the hORFeome 8.1 collection [7, 27], and generated a ‘humanized’ yeast expres-

sion plasmid via recombinational cloning [17]. To assess complementation for each human-

yeast pair, the human protein was expressed in yeast strains bearing temperature-sensitive

mutations [28] in the corresponding yeast gene, and growth was assessed at multiple tempera-

tures (Fig 1; see Methods for detail).

In addition to functional complementation tests for 1060 human-yeast paralog pairs

(including one positive-control paralog pair previously to complement), we assessed 7 addi-

tional known-complementing orthologous pairs as positive control. All complementation tests

were performed twice, and 42 pairs yielded complementation in at least one replicate. These

42 included all 7 positive-control orthologous pairs, and 35 paralogous pairs. The 35 comple-

menting paralog pairs included the positive control and 34 novel pairs, of which 33 were sub-

sequently confirmed. (S1 Fig, see Methods for a complete description of complementation

testing procedures.) Images showing negative functional assay results are available via the

Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.j05n0.

Thus, within a test space of 1060 human-yeast paralog pairs, we recovered 34 complement-

ing pairs of which 33 (97%) were novel. Of the 314 human disease-associated genes tested, 33

(10.4%) yielded a complementation relationship with at least one yeast paralog.

Some essential yeast genes are complemented by multiple human

paralogs sharing only a single domain

Among the 33 novel human-yeast paralog complementation assays established here, there

were four yeast genes that could each be complemented by multiple human genes. For each of

these yeast genes, the corresponding set of complementing human genes shared a common

protein domain. For example, the function of yeast serine/threonine protein kinase Kin28
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Fig 1. Schematic overview of process for assessing the functional effect of human disease-associated variants via

complementation testing. A. We selected paralog pairs where a human disease protein has a yeast paralog for which all protein

domains are also found in the human protein. Homologous pairs of domains are connected by solid lines, while non-homologous

domain pairs are connected by a dashed line. B. For a subset of those paralog pairs for which we identified complementation

relationships, we used these relationships to assess whether the functionality of variants in these assays predicted variant

pathogenicity.

https://doi.org/10.1371/journal.pgen.1006779.g001
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(ORF ID: YDL108W) could be complemented by expression of seven different human pro-

teins (Fig 2): Ribosomal Protein S6 Kinase-Like 1 (RPS6KL1), G Protein-Coupled Receptor

Kinase 4 (GRK4), Cyclin-Dependent Kinase-Like 3 (CDKL3), Bone Morphogenetic Protein

Receptor, type IB (BMPR1B), V-Akt Murine Thymoma Viral Oncogene Homolog 2 (AKT2),

Activin Receptor Type-2B (ACVR2B) and Activin A Receptor, Type 1C (ACVR1C), each shar-

ing the same Pkinase protein domain found within yeast Kin28 (Table 1). However, each of

these seven human proteins contain one or more additional protein domains and have differ-

ent functions in different pathways. Indeed, the only apparent common thread among Kin28-

complementing human proteins is the Pkinase protein domain.

Fig 2. Protein domain architecture of yeast Kin28 and human paralogs. Shown are yeast Kin28 (red text), and human paralogs tested

for complementation (in blue text if we found complementation and black text otherwise). Protein domain patterns Pkinase_Tyr (PFAM

pattern PF07714) and Pkinase (PFAM pattern PF00069) are indicated in light and dark blue, respectively.

https://doi.org/10.1371/journal.pgen.1006779.g002
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The other three examples of yeast genes complemented by multiple human genes were

CAK1 (encoding Cdk-activating kinase Cak1), SEC12 (encoding guanine nucleotide exchange

factor Sec12), and NAN1 (encoding Net1-Associated Nuclear protein Nan1). Complementing

the loss of yeast Cak1 were two human genes encoding Serine/threonine-Protein Kinase

(TBK1) and Cyclin-Dependent Kinase 7 (CDK7) (Fig 3), both of which contain a Pkinase

domain. Complementing loss of yeast Sec12 were human genes IFT122, ELP2, and GNB1L,

each sharing the WD40 repeat domain (PF00400). Loss of yeast Nan1 was rescued by human

genes PAFAH1B1 and RFWD2, also sharing the WD40 repeat domain. Thus, protein domain

function, even when encoded by otherwise highly-diverged gene pairs, can be sufficiently con-

served to allow functional rescue of a yeast protein and thus a potential assay for functional

human variants.

Our search for complementation involved many kinases. Indeed, of the 1060 human/yeast

gene pairs we tested, 480 (45%) of those pairs contained a yeast or human kinase-encoding

gene. To understand this prevalence, we note that we only sought complementation where the

human gene was a disease gene, where the yeast gene was essential, and where all domains in

the yeast protein could be found in the human proteins. Although kinases do not seem to be

enriched amongst human disease genes (they represent ~23% of annotated disease genes as

compared with ~30% of non-disease-annotated genes), they are abundant. In yeast, there are

230 kinase-coding genes, of which 29 are essential. Moreover, 39% of human disease genes

that had a yeast homolog are kinases, so that kinases are enriched for conservation in yeast.

Thus, enrichment for kinases in our search space seems due to the fact that the kinase domain

is ancient and found frequently in both yeast and human proteins. There were 14 yeast kinase-

encoding genes and 56 human kinase-encoding genes amongst these 480 yeast/human kinase

pairs, so that each gene appears in many pairs.

Paralog complementation is only weakly predicted by sequence

similarity

We examined the extent of sequence identity between human disease-associated genes and

their yeast paralogs. For each human and yeast gene pair, we calculated the pairwise sequence

identity (PID; the percentage of aligned positions with identical residues). For a yeast gene

with multiple human paralogs tested, we examined PID for complementing and non-comple-

menting human-yeast paralog pairs. As expected, complementing pairs had higher PID than

non-complementing pairs (Fig 4A, P-value = 0.007, Wilcoxon test). Similarly, for human

genes that had multiple yeast paralogs tested, complementing pairs had relatively higher aver-

age PID (Fig 4B, P-value = 0.003, Wilcoxon test). A similar analysis performed for three addi-

tional sequence-identity calculation methods reached similar conclusions, except for one

method which calculates a substantially lower percent identity in cases where the length of the

Table 1. Seven human genes can complement yeast Kin28.

Human Gene Name Human Gene Symbol Protein Domain

Ribosomal Protein S6 Kinase-Like 1 RPS6KL1 PF00069,PF04212

G Protein-Coupled Receptor Kinase 4 GRK4 PF00069

Cyclin-Dependent Kinase-Like 3 CDKL3 PF00069

Bone Morphogenetic Protein Receptor BMPR1B PF00069,PF01064,PF08515

V-Akt Murine Thymoma Viral Oncogene Homolog 2 AKT2 PF00069,PF00169,PF00433

Activin Receptor Type-2B ACVR2B PF00069,PF01064

Activin A Receptor ACVR1C PF00069,PF01064,PF08515

https://doi.org/10.1371/journal.pgen.1006779.t001
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aligned region differs greatly between two aligned proteins (see S1 File). Our results show that,

as with human-yeast orthologs [12, 15], sequence similarity between human-yeast paralogs is

correlated with—but only weakly predictive of—functional complementation. For example, a

30% PID threshold captured 60% of the complementing pairs, but 30% of non-complementing

pairs also exceeded this threshold. Thus, systematic experimental testing will continue to be

required for discovery of complementing paralog pairs.

Assessing the pathogenicity of missense variants

Having established functional complementation relationships between human-yeast paralogs,

we wondered whether these relationships could be exploited to assess the pathogenicity of

human genetic variants. Of the 33 disease-associated genes for which we could identify a novel

complementation relationship, there were 17 with known pathogenic missense variants

according to HGMD DM annotation. To assess the ability of human/yeast paralog comple-

mentation assays to identify pathogenic variants (identified as those with high confidence

“DM” annotation, indicating disease causality, from the HGMD database), we selected a subset

of seven human disease-associated genes with multiple annotated disease-causing missense

variants [29–31] (Table 2). Non-disease-annotated missense variants were present in the

dbSNP database [32–34] for five of these seven genes. In total, we tested 19 disease-causing

missense variants, each qualifying as causal according to the most stringent “DM” annotation

in HGMD and the most stringent “pathogenic” annotation in ClinVar [35]. We also tested 16

non-disease-associated variants from dbSNP, selecting lower allele frequency variants where

possible to better control for the generally low allele frequency of disease-causing variants.

For each of these 35 human variants, we generated an expression clone by site-directed

mutagenesis and recombinational cloning, transformed it into the appropriate temperature-

sensitive (TS) yeast strain, and assessed functional complementation (Fig 1; see Methods). For

each genetic variant, this yielded a semi-quantitative Failure-to-Complement (FC) score, cor-

responding to the previously described “FCS score” [17]. FC scores were calibrated so that the

Fig 3. Functional assay and protein domain architecture of yeast Cak1 and its complementing human

paralogs. (A) Functional complementation assay results showing that expression of human proteins TBK1

and CDK7 complements defects in a strain (YFL029C_tsa650) that encodes a temperature sensitive variant

of Cak1 (described as “cak1-ts” above). (B) Pkinase domains are shown in dark blue. Complementing

paralogs indicated in blue text.

https://doi.org/10.1371/journal.pgen.1006779.g003
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Fig 4. Relating sequence similarity and ability of a paralog to complement. The average percent identity (PID) score

distribution is shown for human-yeast pairs such that multiple human paralogs were tested for a given yeast protein (A), and for

human-yeast pairs such that multiple yeast paralogs were tested for a given human protein (B). In each case, the distribution is

shown separately for complementing and non-complementing pairs. Each bin height is the count of human or yeast genes having a

PID within the appropriate range for that bin. That complementing and non-complementing distributions are both shifted in positon

relative to one another and highly overlapping suggests that sequence similarity is an informative but imperfect predictor of

complementation.

https://doi.org/10.1371/journal.pgen.1006779.g004
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positive (complementing) control wild-type human plasmid achieves a FC score of 0, and a

Green Fluorescent Protein (GFP) negative (non-complementing) control achieves an FC score

of 1. Following previous conventions, only variants with a score greater than 0.5 were consid-

ered deleterious [17, 36].

Functional complementation assays predicted 15 (79%) of 19 disease variants and 4 (25%)

of the 16 non-disease-associated variants we tested to be deleterious (S2 Fig). Our observation

that 25% of non-disease-annotated variants failed to complement raises the possibility that

many non-disease-annotated genetic variants may in fact impact gene function, so that our

estimates of recall and precision may be conservatively low. Nevertheless, functional comple-

mentation assays clearly distinguish disease and non-disease-associated genetic variants: For

the five genes that have both disease-associated and non-disease-associated variants, disease-

associated variants exhibited significantly higher FC scores (P-value = 0.001, Wilcoxon test;

Table 3, Fig 5A).

To put performance of functional complementation assays in the context of computational

alternative methods, we applied PolyPhen-2 [36] and Protein Variation Effect Analyzer (PRO-

VEAN) [37], two widely used computational methods for predicting pathogenic variants. At

the 0.5 threshold, paralog-based functional complementation assays achieved 83% precision

(fraction of predicted-deleterious variants that are annotated as pathogenic; 95% CI 58% -

96%) at 79% recall (fraction of pathogenic variants predicted to be deleterious). At a threshold

score (0.5) which achieves the same 79% recall value, PolyPhen-2 achieved precision 75% (95%

CI 51% - 90%). Different performance tradeoffs could be achieved at different thresholds. At

the 0.7 threshold, paralog-based functional complementation assays achieved 100% precision

(95% CI 60%-100%) at 42% recall. At the same 42% recall, PolyPhen-2 achieved 84% precision

(95% CI 68%-100%). Although paralog-based variant testing numerically outperforms Poly-

Phen-2 in terms of precision at matched-recall thresholds, the limited sample sizes do not

allow us conclude that this increase is significant. However, multiple performance measures—

Matthews correlation coefficient (MCC), area under the precision-recall curve (AUPRC), area

under the receiver operating characteristic (AUROC) curve, and recall at 90% precision

(REC90)—suggest that paralog-based functional complementation assays are at least on par

with computational methods in predicting pathogenicity (Table 3).

To more generally assess the performance of complementation-based pathogenicity assays

against computational tests, we combined paralog-based and previous ortholog-based comple-

mentation pathogenicity tests [17]. At score thresholds where FC score and PolyPhen-2 both

achieve a recall of 90%, the FC precision is 81% while PolyPhen-2 precision is 72%. Using the

previously described performance threshold value of 0.5 for the FC score [17] achieves a recall

of 78% and precision of 89% for the FC score. At a matched 78%, recall threshold, PolyPhen-2

Table 3. Pathogenicity prediction performance for the human disease gene paralog test set.

Method MCC AUPRC AUROC REC90

PolyPhen-2 0.48 0.76 0.55 0.74

PROVEAN 0.37 0.7 0.52 0.71

Paralog-based FC 0.59 0.83 0.55 0.78

(MCC) Matthews correlation coefficient;

(AUPRC) area under the precision-recall curve;

(AUROC) area under the receiver-operating characteristic curve;

(REC90) recall at 90% precision.

Performance estimates for best-performing methods are indicated by underline

https://doi.org/10.1371/journal.pgen.1006779.t003
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yields a lower precision of 73% (Fisher’s exact test P-value = 0.003). A similar comparison

using only ortholog-based assays yielded the same conclusion, albeit with a less significant P-

value of 0.008 [17]. Thus, inclusion of paralog-based complementation strengthens previous

conclusions that complementation-based identification of functional variation outperforms

current computational approaches.

We next investigated whether the combination of FC with PolyPhen-2 scores could yield

performance that exceeds either approach alone. We used seven alternative ways to combine

these scores: minimum, maximum, mean, and four alternative weighted means (w1 through

w4) (Fig 5B). The results confirmed our previous conclusion that combining FC and Poly-

Phen-2 scores can improve the performance in the high precision/low recall region.

Fig 5. Ability of functional complementation to predict pathogenicity. (A) Distribution of FC scores for

disease associated (red line) or non-disease-associated variants (blue line). FC scores from paralog-based

complementation assays are significantly higher for disease-associated variants than non-disease-

associated variants (P-value, Wilcoxon test). (B) Precision vs. recall performance for functional

complementation scores (both paralog- and ortholog-based), PolyPhen-2 scores, and various options for

combining the two approaches (see Methods).

https://doi.org/10.1371/journal.pgen.1006779.g005
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We wondered whether complementation assays are capable of detecting pathogenic vari-

ants when these variants fall outside of the aligned homology region. It is possible that variants

will affect additional human gene functions that are not needed for complementation, so that

such pathogenic variants will be missed. However, variants which alter protein folding, or sta-

bility in a human cell may often do the same in a yeast cell. Interestingly, the ability of comple-

mentation to identify disease variation did not depend strongly on whether or not the

variation falls within the aligned region of homology between yeast and human genes. As

shown in Fig 6. at a score threshold achieving 90% recall, the likelihood of detecting a disease

variant was comparable: 0.76 and 0.87 respectively for variants inside and outside of the

aligned region of human and yeast paralogous pairs. Taking ortholog- and paralog-based com-

plementation assay data together, the distributions of FC scores for variants inside and outside

of the aligned region were statistically indistinguishable (P-value = 0.37, Wilcoxon test). All

Wilcoxon tests are unaffected by our somewhat arbitrary assignment of numeric FC scores to

different qualitative classes of observed complementation, because these tests only use the

ranking order of quantitative values. At score thresholds yielding a recall of 90%, pathogenic

variant detection variation achieved a precision rate of 92% and 88% respectively for variants

inside and outside of the aligned region. Thus, functional complementation assays are capable

of accurately detecting pathogenic variants, even outside of the aligned homology region.

Discussion

Considerable effort has been made to understand how genetic changes give rise to the molecu-

lar effects that cause diseases [38–40]. There are many databases and tools for prioritizing can-

didate single nucleotide polymorphisms (SNPs) or hypothesizing the molecular causes of

genetic disease. Functional complementation assays enable identification of pathogenic disease

variants with substantially greater sensitivity than computational methods [17]. Although pre-

vious trans-species functional complementation assays have been almost exclusively based on

orthology relationships, our systematic search yielded novel paralogy-based functional com-

plementation assays for 33 human disease genes.

Fig 6. Performance of pathogenic variant identification does not strongly depend on whether the

variant is in the aligned region. Here we show precision vs recall performance for varants that either do

(‘aligned’) or do not (non-aligned) fall within the sequence region that can be aligned between human and

yeast homologs.

https://doi.org/10.1371/journal.pgen.1006779.g006
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The gene RAB33B, which encodes a small GTP-binding protein of the RAB family and is

associated with Smith-McCort Dysplasia, can illustrate paralog-based functional complemen-

tation. We successfully observed failure to complement for the two disease associated variants,

P219S and K46Q [41, 42]. Interestingly, both non-disease-annotated variants, P142L

(rs369719131) and T177M (rs140381459), also showed loss of complementation. Our findings

agreed with PolyPhen-2 and PROVEAN which each also predicted them to be deleterious. All

four variants tested are within the Ras domain. Thus, even though variants P142L and T177M

are not known to be associated with disease, they appear to affect protein function.

Another example is the human CASK gene, which encodes calcium/calmodulin-dependent

serine protein kinase. CASK encodes a 921-amino acid polypeptide with an N-terminal cal-

cium/calmodulin-dependent protein kinase-like domain, PDZ and SH3 domains, a potential

protein-binding motif, and a domain homologous to guanylate kinase [43]. Sequence variants

in CASK cause intellectual disability [44]. The only annotated disease variant we tested in

CASK was the kinase domain variant R28L causing FG Syndrome [45], an X-linked disorder

causing intellectual disability, physical anomalies and developmental delays. This variant

exhibited loss of complementation. We also tested several non-disease-associated CASK vari-

ants (D471N, M438L, R430C, and T573I). Three of the four non-disease variants tested

retained the ability to complement. By contrast, the variant T573I (rs141840001), despite not

being annotated as associated with Mendelian disease [30, 35, 46] or via any GWA study [47],

showed reduced complementation. This variant was originally identified in a clinical genetics

laboratory (Emory Genetics Laboratory, ClinVar accession RCV000175306.1) in an autistic

male, so that the evidence of functionality we found for T573I may spur further investigation.

In addition to yielding a direct benefit in the form of novel functional assays, our systematic

search for paralogous complementation enabled some general observations about complemen-

tation relationships. First, as with orthologs, sequence similarity is only a very weak predictor

of complementation relationships (Fig 4), necessitating experimentation to identify comple-

mentation relationships.

Second, despite the idea that paralogs often have divergent functions, we found that multi-

ple human genes (having in common a single protein domain) can sometimes complement

the same yeast gene. For example, the seven human disease-associated genes that can comple-

ment yeast kin28 all encode a protein kinase domain. Interestingly, the seven complementing

genes fall into three different major kinase groups, including TKL kinases, CMGC kinases and

AGC kinases (Fig 7). An additional 31 human disease-associated genes that encode the same

protein domain (many of which fall into the same three major kinase groups) did not comple-

ment yeast kin28. Using the multiple sequence alignment tool Clustal [48] to examine the phy-

logenetic tree of tested human protein homologs of yeast Kin28), we also found no evident

clustering of the yeast Kin28-complementing human homologs that could distinguish them

from non-complementing human kinases. This result highlights the idea that closer evolution-

ary relationships do not guarantee complementation. When we mapped the 38 kinases to

KEGG and REACTOME pathways, 5 of 7 complementing kinases mapped to signal transduc-

tion pathways, but this was not significantly different from rate at which 22 tested non-com-

plementing kinases of 31 mapped to the same pathway (P = 0.6, Fisher’s exact test). Thus, we

found no obvious predictors of which kinases were more likely to complement (S4 Table).

We were surprised to find that the success of paralog-based complementation assays is on

par with ortholog-based complementation in terms of identifying disease variation. Examining

a test set of disease- and non-disease-associated variation, we found that paralog-based com-

plementation could detect ~78% of pathogenic variants at 90% precision, which was statisti-

cally indistinguishable from the performance of ortholog-based complementation. The
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Fig 7. The kinome tree of yeast Kin28 and its kinase paralogs tested here. Kinases that can complement yeast Kin 28 were colored in pink, other

kinases tested for ability to complement yeast Kin28 were colored in cyan. (The image was generated from the Kinome-Render Tool [49] hosted at

Cell Signaling, Inc.).

https://doi.org/10.1371/journal.pgen.1006779.g007
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combination of paralog and ortholog-based complementation continues to outperform cur-

rent computational approaches.

Paralog-based assays have high potential to extend the arsenal of assays to assess the func-

tionality of human coding variation. This is despite the fact that paralogs yielded a comple-

mentation relationship for a smaller fraction of human genes than had been observed for

ortholog pairs: this fraction was 10% in the current study as compared with 19% for ortholog

pairs [17]. Indeed, Kachroo et al [12] achieved an even higher 47% rate of complementation

for a subset of orthologous pairs that are “one to one”, i.e., for which there are no close paralogs

in either human or yeast. According to the YeastMine database [50] there are 773 additional

human disease-associated genes with yeast paralogs, suggesting that a functional assay could

potentially be developed for at least ~70 additional human disease-associated genes through

further examination of paralog complementation. According to HGMD, about 3019 human

disease-associated genes have paralogs in either S. cerevisiae or Schizosaccharomyces pombe.
Simple extrapolation suggests that a more exhaustive search for complementation relation-

ships in these two yeast species could yield complementation assays for assessing functional

variation in 300 human disease genes. Considering multicellular model organisms, the number

of potential complementation assays increases further (see Table 4 for a summary of human

disease-associated genes with either an ortholog or paralog in five model animal systems).

Given that complementation tests work as well as they do for identifying pathogenic variation

in the billion-year diverged model organism S. cerevisiae, it stands to reason that other model

systems (including complementation in human cells where cell-autonomous selectable pheno-

types are known) should also be explored.

Our results combining paralog- and ortholog-based complementation tests show that these

assays can be used to accurately identify pathogenic variants even when those variants fall out-

side of the aligned region. This is consistent with the idea that many deleterious variants affect

protein folding or stability and disrupt the function of the entire protein. Thus, even where

only a single domain is required for a human protein to complement its yeast paralog, that

relationship can be exploited to detect a substantial subset of functional variation throughout

the length of the human protein.

It is worth revisiting our working definition of paralogy (homology without annotated

orthology). Paralogs under this definition may be previously unrecognized orthologs, and

gene pairs with complementation relationships may be enriched in such cases. However, for

the practical purpose of identifying pathogenic variants using a complementation assay, it

seems that the distinction between paralogy and cryptic orthology is essentially irrelevant. In

Table 4. Numbers of human disease-associated genes with orthologs and paralogs in five model

species.

Organism Human disease-associated genes

Orthologs Paralogs

S. cerevisiae or Schizosaccharomyces pombe 6648 3019

Mus musculus 5547 256

Rattus norvegicus 5492 265

Danio rerio 4619 231

Drosophila melanogaster 3021 384*

Caenorhabditis elegans 2665 169

*This figure is conservative, in that the HGMD source for this information used a more stringent criterion for

paralogy (elsewhere in this study homologs without annotated orthology are referred to as paralogs).

https://doi.org/10.1371/journal.pgen.1006779.t004
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either case, complementation relationships between human genes and their homologs in other

species beyond S. cerevisiae provide substantial further opportunities to study the functional

properties of human disease-associated variants.

One potential limitation of complementation testing is that, while it may accurately detect

many loss-of-function variants, we expect that it is less likely to identify gain of function vari-

ants. We reviewed the primary literature for the 19 disease variants we tested via paralog-based

complementation. Of these 19, the literature suggested “loss of function” for 16 and “gain of

function” for only one (S3 Table). The putative “gain of function” variant retained its ability to

complement, and was thus, as expected, not detected as damaging by our complementation

assay.

Given that computational approaches are faster, cheaper and available for a wider range of

genes than are functional complementation assays, it is worth asking whether systematic

experimental variant assessment is worth pursuing. Where variant assessment is critical for

diagnosis and therapy, and where computational methods cannot return a sufficiently confi-

dent call for a large fraction of disease variants, alternatives are clearly needed. Moreover, new

advances in “deep mutational scanning” have enabled the en masse application of a cell-based

functional assay to essentially all missense variants for a given protein [51]. For a fixed initial

cost, deep mutational scans can provide a comprehensive ‘look-up’ table allowing instanta-

neous interpretation of missense variants as they appear in the clinic.

Materials and methods

Selecting human-yeast homologs for testing

To systematically test the ability of wild-type human disease-associated genes to rescue muta-

tions in paralogous yeast genes, we defined the search space to be human genes for which

HGMD [29–31] has annotated one or more alleles as being ‘DM’ (disease-causing) and for

which a clone was available in ORFeome version 8.1 [27].

Because protein domains are distinct functional and structural units in a protein, because

variants within a particular domain have a heightened chance of affecting structural and func-

tional properties of the proteins in which they appear [22–24], and because domain-based

mutational studies have proven useful in elucidating the functional and disease effects of vari-

ants [22, 25, 26], we also used protein domain annotations as a criterion for selecting human-

yeast paralogs. We searched both yeast and human genes against the Pfam domain types from

the Pfam protein domain family database (version 27) [52], using an E-value cutoff of 0.001

[53], and identified cases where all protein domains encoded by a yeast gene were fully ‘cov-

ered’ by a human gene. In our previous study [17], we used the InParanoid database [54] to

select yeast/human orthologous pairs for which the human gene had at least one disease-asso-

ciated variant according to either HGMD or OMIM databases. Here yeast/human pairs were

chosen similarly, except that we accepted all homologs reported by InParanoid except those

annotated as orthologs. The InParanoid program uses NCBI-BlastP pairwise similarity scores

for constructing orthology groups. An orthology group is initially composed of two so-called

seed orthologs that are found by mutual best hits between two proteomes.

Considering only paralog pairs where the yeast gene was essential and had an available tem-

perature sensitive mutation, where the human gene had an available expression clone, and

where all protein domains in the yeast gene were covered in the corresponding human gene,

we selected 1060 human-yeast paralog pairs corresponding to 314 human genes and 162 yeast

genes. We note that a single gene in one species can have multiple paralogs in another species,

and thus appear in multiple tested paralog pairs.
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Constructing wild-type human ORFs and human ORFs with disease-

associated variants

Wild-type human disease-associated ORFs were selected from the human ORFeome version

8.1 [27]. As described in Sun et al [17], human ORFs with disease-associated variants were

constructed by site-directed mutagenesis using the Thermo Scientific Phusion Site-Directed

Mutagenesis Kit. The Gateway Donor plasmid was amplified using phosphorylated primers

that introduce the desired changes followed by a 5-minute, room-temperature ligation reac-

tion. The resulting plasmid was then transformed into NEB5α competent E. coli cells (New

England Biolabs).

Constructing the S. cerevisiae expression plasmid pHYC-URA-ORF/

GFP

All expressed ORFs used in these studies—including wild-type human disease-associated

ORFs, human ORFs with constructed alleles, and the GFP control—were transferred into the

destination vector pCM188- URA [55] by Gateway LR reactions using the All Gateway LR Clo-

nase enzyme kit from Life Technologies. The destination vector pCM188-URA was obtained

from ATCC, and subsequently altered to be Gateway compatible following the procedure

applied in Sun et al (Genome Research 2016) to vectors pHYCDest-LEU2 and pHYCDest-

NatMX. Plasmids generated by Gateway LR cloning were transformed into NEB5α competent

E. coli cells (New England Biolabs) and selected on LB Agar plates with 100μg/mL Ampicillin.

All plasmid DNA samples were isolated and purified using the NucleoSpin 96 Plasmid toolkit

(Ref: 740625.24) and confirmed by Sanger sequencing. Plasmids carrying expressed ORFs

were then transformed into the corresponding yeast temperature-sensitive strains.

Yeast-based functional complementation assay

Yeast temperature-sensitive (TS) strains carrying human ORFs or GFP control were spotted in

a 10-fold dilution series and grown at a range of temperatures (room temperature of ~24˚C,

and 28, 30, 32, 33, 34, 35, 36 and 38˚C). Results were interpreted by comparing the growth dif-

ference between the yeast strains expressing human genes and the corresponding control

strain expressing the GFP gene. Each test was initially performed twice and pairs were found

in at least one replicate were considered complementation candidates. For confirmation exper-

iments, we went back to the glycerol stock of the relevant yeast TS strain, and re-transformed

the expression plasmid for the candidate complementing human gene (and negative GFP con-

trol) into this fresh isolate. We further considered only those candidates passing a third repli-

cate functional complementation assay.

Predicting functional effects for missense variants

To predict functional effects for each missense genetic variant, we assessed complementation

with the above-described yeast spotting assays and assigned a semi-quantitative Failure-to-

Complement (FC) score (corresponding to the previously-described FCS score [17]). Semi-

quantitative FC scores were assigned to each variant: 0 (wild-type-like complementation), 0.6

(reduced complementation), 0.8 (severely reduced complementation) and 1 (complete loss of

complementation). The predicted functional impact score for disease-associated variants were

generated by the two best-performing computational methods in our previous study [17]:

Polymorphism Phenotyping v2 (PolyPhen-2 [36, 56]) and PROVEAN [37].

As a pre-processing step before combining computational and FC scores, we followed the

same method introduced by Sun et al, to calibrate each scoring system. To calculate the
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calibrated score for each disease variant, we combined the variants tested in both paralog-

based and ortholog-based complementation assays, and randomly separated them into 10

groups. Precision within the FC (or PolyPhen-2) training data was calculated at different

thresholds of each scoring method. precision and recall performance was then evaluated for

seven methods of combining the two scores: minimum, maximum, mean, and four alternative

weighted mean methods, where each method takes the form of α × calibrated-FC-score + (1-

α) × calibrated-PolyPhen2-score. Specifically, methods w1, w2, w3 and w4 corresponded to α
values of 0.9, 0.8, 0.7 and 0.6.

The area under the precision-recall curve (AUPRC) was calculated using R package

“PRROC”. When comparing the performance of functional complementation assays in pre-

dicting disease associated variants in either aligned or not aligned regions, we wished to

account for the fact that changing the prior probability of pathogenicity can alter precision

estimates. Therefore, performance was estimated using the ratio of AUPRC relative to the

prior probability (designated as AUPRC_norm) instead of AUPRC.
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