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The ORFeome Collaboration: a genome-
scale human ORF-clone resource

To the Editor: Here we describe the ORFeome Collaboration (OC) 
open reading frame (ORF) clone collection, created by the OC 
(http://www.orfeomecollaboration.org/), an international collabo-
ration of academic and commercial groups committed to providing 
genome-scale clone resources for human genes via worldwide com-
mercial and academic clone distributors.

Proteins are the predominant functional modules determining 
the fate of cells, tissues and organisms. An encyclopedic understand-
ing of cellular physiology requires protein expression for protein-
protein interaction screening, cellular functional screening, valida-
tion of knockout and knockdown phenotypes, and numerous other 
approaches. Performing such studies on individual proteins or at 
the proteome scale requires a comprehensive collection of human 
protein expression clones.

Our collection comprises ORF clones (Supplementary Note) 
and covers 17,154 RefSeq and Ensembl genes, nearly 73% of human 
RefSeq genes (http://www.ncbi.nlm.nih.gov/refseq/rsg/) and 79% 
of the highly curated Consensus Coding DNA Sequence Project 
(CCDS) human genes (http://www.ncbi.nlm.nih.gov/CCDS/
CcdsBrowse.cgi) (Fig. 1a and Supplementary Data). The collec-
tion includes clones of transcript variants for 6,304 (37%) of those 
genes. All major functional categories of human genes are substan-
tially represented (Fig. 1b).

All clones are provided in the Gateway vector format (Life 
Technologies), permitting high-throughput, precise and directional 
transfer of ORFs to a large variety of vectors for protein expression 
in biological systems such as Escherichia coli, yeast and mammals 
or using cell-free protein expression1 (Supplementary Note). OC 
clones were generated primarily by PCR amplification of the ORF 
from full-length, sequence-verified human cDNA clones of the 
Mammalian Gene Collection2 or the German cDNA Consortium3; 
ORFs were also prepared by directed RT-PCR cloning4 or DNA syn-
thesis2. All 5′ and 3′ untranslated regions were excluded, permitting 
direct expression of ORFs as fusions to amino- or carboxy-termi-
nal polypeptides, or as native protein, after transfer to a Gateway-
expression vector1. The clones are designed to maintain the correct 
reading frame for both amino- and carboxy-fusion proteins. Among 
all genes represented in the OC collection, 64% of clones are with-
out stop codons, 5% have stop codons, and 31% are present in both 
versions.

Each OC clone was isolated from a single colony and is fully 
sequenced. Individual clone sequences have been deposited in the 
GenBank, EMBL and DDBJ databases. The OC website provides a 
searchable database with annotation of all OC clones, their respec-
tive genes, and clone confidence levels based on CCDS and RefSeq 
annotations (Supplementary Note) along with links to the UCSC 
and RIKEN browsers (http://genome.ucsc.edu/cgi-bin/hgGateway 
and http://fantom.gsc.riken.jp/zenbu/gLyphs/#config), which pro-

vide graphical representations of the gene structures and transcripts. 
OC clones are distributed via a good faith agreement, giving unre-
stricted clone access to all scientists worldwide. The OC website lists 
OC clone distributors.

The value of the OC resource has been demonstrated in numer-
ous studies covering a broad range of applications. These include 
large-scale binary protein-protein interaction mapping5, produc-
tion of recombinant human proteins6, mapping of co-complex 
associations, fluorescent protein tagging for human protein localiza-
tion in mammalian cells and microscopy-based functional screen-
ing of proteins, development of disease-specific protein interaction 

Figure 1 | RefSeq and Ensembl genes and functional gene categories 
represented in the OC. (a) Numbers of protein-coding genes represented in 
the OC collection from RefSeq (blue) and Ensembl (green) gene catalogs. The 
table summarizes these numbers, together with OC coverage for RefSeq-only 
and Ensembl-only genes. (b) Numbers of human RefSeq genes represented in 
the OC collection versus in the human genome, compared in nine functional 
categories; percentages of genes in the OC are presented above the bars. The 
methods used to calculate the gene numbers in each category are explained 
in the Supplementary Note and contrasted to the standard Gene Ontology 
categories. An expanded list of the top Gene Ontology categories is also 
provided in the Supplementary Note. The data underlying the graphs are 
provided as Supplementary Data.
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networks, coexpression to rescue RNA interference– or CRISPR-
CAS9–induced reduction of endogenous transcripts, and expression 
of ORFs carrying a mutation of interest to allow measurement of the 
mutation effect in the absence of the wild-type background.

High-level gene coverage, combined with the versatility of 
Gateway cloning, and full access to OC clones make this collection 
a unique and valuable resource for the scientific community that 
should aid in the functional characterization of new protein targets 
and testing of disease-relevant mutations on a large scale. The OC 
resource will continue to be expanded in the future to increase 
human gene coverage, provide additional isoforms where avail-
able, provide clones with medically relevant mutations and add 
additional species, including ORFs from Xenopus and Drosophila.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (http://dx.doi.org/10.1038/nmeth.3776).
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TeraFly: real-time three-dimensional 
visualization and annotation of terabytes 
of multidimensional volumetric images

To the Editor: New sample preparation and high-throughput light-
sheet microscopy techniques1 are increasingly capable of generating 
multidimensional (3D and higher) images easily exceeding the tera-
byte size. This has posed a significant challenge for scalable inter-
active visualization and quantitative annotation of such big image 
data. A common practice is to design a data-streaming and visualiza-
tion tool to supply and display small parts of an image volume when 
needed2,3. However, existing tools allow only 2D slice-based render-
ing of 3D image stacks. Such 2D approaches not only are time con-
suming and low throughput but also bring bias to the understand-
ing of intrinsic 3D properties of bioimage data4. A free, open-source 
and cross-platform software tool for true 3D visualization and 3D 
annotation of very large multidimensional volumes is highly desired 
(Supplementary Note 1).
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