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Cellular functions are mediated by complex interactome networks of physical,
biochemical, and functional interactions between DNA sequences, RNA mol-
ecules, proteins, lipids, and small metabolites. A thorough understanding of
cellular organization requires accurate and relatively complete models of inter-
actome networks at proteome scale. The recent publication of four human
protein–protein interaction (PPI) maps represents a technological breakthrough
and an unprecedented resource for the scientific community, heralding a new
era of proteome-scale human interactomics. Our knowledge gained from these
and complementary studies provides fresh insights into the opportunities and
challenges when analyzing systematically generated interactome data, defines
a clear roadmap towards the generation of a first reference interactome, and
reveals new perspectives on the organization of cellular life.

Proteome-Scale Human Interactome Maps
Cellular functions are orchestrated by complex ‘interactome’ networks of physical and func-
tional interactions between biological macromolecules, including DNA, RNA, proteins, and
lipids, as well as smaller molecules such as metabolites. The relationships between such
components are best modeled as graphical networks in which molecules are represented by
‘nodes’ and the interactions between them by links or ‘edges’ [1]. Analyzing the properties of
such networks can provide important insights into cellular organization and the underlying
systems-level properties of life [1].

Because proteins are crucial for most cellular functions and typically participate in biological
processes in concert with other proteins, reference maps of PPIs in an organism, or its PPI
interactome, should provide a deeper and more mechanistic understanding of cellular func-
tions. However, in contrast to genome and transcriptome reference sequences, human PPI
interactome maps are still relatively far from completeness. The reasons are twofold. First,
compared to DNA or RNA, proteins tend to be more biochemically complex and thus
technically challenging to manipulate and study. Second, the detection of interactions is more
difficult than directly detecting molecules given the wide range of interaction strengths and
specificities. Indeed, it took several decades to develop robust methods for detecting PPIs at
proteome-scale. These efforts, paired with the availability of nearly complete ‘ORFeome’
collections of ‘ready-to-be-expressed’ human open reading frames (ORFs) [2], laid the neces-
sary foundation to enable substantial progress in mapping the human PPI interactome (here-
after referred to as ‘interactome’ for simplicity). In the span of a couple of years, four
groundbreaking human interactome maps have been published (Figure 1), each utilizing
different methodologies and thus capturing different aspects of the human interactome [3–
6]. This review compares and contrasts these four interactome maps, puts their achievements
and findings into context, and identifies remaining challenges in the field of human protein
interactomics.

Trends
Proteome-scale maps of human pro-
tein interactions are becoming avail-
able, generated by complementary
approaches.

High-throughput protein interactome
maps are of high quality, on a par with
literature-curated interaction datasets.

Systematically generated interactome
maps more uniformly cover the human
proteome than do literature-curated
interaction datasets that display a
strong study bias.

Analysis of systematically generated
interactome maps spurs new discov-
eries impossible to obtain with litera-
ture-curated interaction maps.
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Human PPI Mapping at the Proteome Scale
We define a PPI as a direct physical contact between two proteins. Such interactions may
occur on their own in a binary manner or may require additional interaction partners. Proteins
can form multimeric complexes in which there are many direct interactions (PPIs) as well as
indirect protein–protein associations (PPAs) between the different proteins of the complex.
Currently, two orthogonal approaches exist for experimentally identifying biophysical relation-
ships between pairs of proteins (in short, biophysical protein pairs or BPPs, which include PPIs
and PPAs) at proteome scale: binary mapping and protein complex mapping (Figure 2).

Binary mapping approaches interrogate pairs of proteins for the existence of direct interactions
between them (PPIs). Protein-complex mapping approaches, [308_TD$DIFF]by contrast, aim to identify the
set of proteins that belong to amultimeric protein complex, wherein pairs of proteins form either
direct contacts (PPIs) or are linked by indirect associations (PPAs). Yeast two-hybrid (Y2H)
systems combined with orthogonal validation assays performed in mammalian cells and/or in
vitro [7] are now routinely used to screen hundreds of millions of protein pairs for possible
interactions [8]. Y2H is based on the activation of a reporter gene upon the reconstitution of a
transcription factor via a pair of interacting proteins in yeast, resulting in a growth selection
(Figure 2). The relative ease of working with yeast and the ability to select for interacting pairs
determine the scalability of Y2H. The precision and sensitivity of datasets generated with Y2H
are determined with the help of validation assays in which pairs identified in the screens are
systematically tested together with large sets of known PPIs and random pairs of proteins as
positive and negative controls, respectively. The validation assays routinely used for this
purpose are based on reconstitution of split enzymes or on the activation of the STAT3
pathway, resulting in a readout such as fluorescence or luminescence [9–11].

Two approaches exist for the identification of protein complexes at proteome scale: affinity
purification (AP) followed by mass spectrometry (MS) or ‘AP-MS’ and co-fractionation (CoFrac)
followed by MS or ‘CoFrac-MS’. In AP-MS, protein baits are purified from a cell lysate and
copurified proteins (the preys) are detected by MS. In CoFrac-MS, protein extracts are
extensively fractionated to separate protein complexes whose components are then detected
by MS (Figure 2). Current methods for protein-complex identification operated at proteome
scale are unable to distinguish between PPAs and PPIs for all reported protein pairs. Y2H
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Figure 1. Published Systematic Human Protein InteractomeMaps. It took about 10 years from the first publication
of amedium-scale set of human protein–protein interactions (PPIs) to the publication of several proteome-scale systematic
maps of biophysical relationships between pairs of human proteins (BPPs). The color code indicates the primary screening
method used. The displayed datasets are, from left to right, Stelzl et al. [57], Rual et al. [58], Ewing et al. [59], CoFrac-12
[17], Kristensen et al. [60], HI-II-14 [5], BioPlex [4], CoFrac-15 [6], and QUBIC [3]. Abbreviations: AP-MS, affinity purification
(AP) followed by mass spectrometry (MS); CoFrac-MS, co-fractionation (CoFrac) followed by MS; Y2H, yeast two-hybrid.
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Figure 2. Overview of the Generation of Four Recently Published Human Interactome Maps. Empty circles represent expression constructs, filled circles
represent proteins. The number of pairs and proteins are determined after mapping each dataset to the Entrez Gene ID gene space. The maps are HI-II-14 [5], BioPlex
[4], QUBIC [3], and CoFrac-15 [6]. Abbreviations: AD, activation domain of the Gal4 transcription factor; AP-MS, affinity purification (AP) followed by mass spectrometry
(MS); co-IP, co-immunoprecipitation; DB, DNA-binding domain; MAPPIT, mammalian protein–protein interaction trap; NGS, next-generation sequencing; PCA, protein
complementation assay; PPA, protein–protein association; PPI, protein–protein interaction; SILAC, stable isotope labeling of amino acids in cell culture; wNAPPA, well
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followed by systematic orthogonal validation, two forms of AP-MS, and CoFrac-MS strategies
have been applied to the human proteome to produce four recently published human inter-
actome maps, hereafter referred to as HI-II-14 [5], BioPlex [4], QUBIC [3], and CoFrac [6]
(Figure 2).

Insights from Analyzing Systematically Generated Human Interactome Maps
These four human interactome maps have been generated and processed using different
experimental and analytical frameworks, resulting in exciting findings that span topics as
diverse as the quality and biases of current interactome maps, the evolution of protein
complexes, and how interaction strength relates to interactome organization [3–6]. Rolland
and colleagues used computational and experimental approaches to investigate the quality of
literature-curated PPIs originating from small-scale studies [5]. Retesting literature PPIs in two
different assays revealed a threefold higher rate at which literature PPIs with multiple lines of
experimental evidence (hereafter referred to as Lit-BM-13) scored positive compared to those
PPIs with only one piece of evidence. Further analysis of Lit-BM-13 PPIs identified an inherent
bias of the ‘literature interactome’ towards heavily studied and/or highly expressed proteins
(Figure 3) [5]. In fact, Lit-BM-13 mostly consists of PPIs involving proteins encoded by genes
characterized in many publications, and is depleted of interactions involving proteins described
in few or no publications [5]. In contrast to the patterns in Lit-BM-13, the rate at which the four
systematic interactome maps detect BPPs across the genome-by-genome space is more
homogeneous, suggesting that the observed skewed distribution of Lit-BM-13 PPIs originates
from a ‘sociological’ or ‘study’ bias (Figure 3) [5]. Therefore, the exclusive use of literature-
derived PPI maps in network analysis may lead to incorrect conclusions about systems-level
properties. For example, correlations between the number of interaction partners, or ‘degree’,
of proteins and the functional properties of their corresponding genes, such as essentiality,
might have been observed mainly because essential genes are more studied [12,13]. Using HI-
II-14, the interactome map that is least biased among the four with respect to the number of
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Figure 3. Genome-Wide Coverage Biases of Functional and Biophysical Protein Networks. Interactomemaps
are each represented as an adjacency matrix in which all genes in the human genome are ranked based on publication
count as extracted from [5] and grouped into bins of 478. The color scale was adjusted for every network to range from 0 to
the largest number of protein pairs observed in any bin-by-bin subspace. Sources of the networks: Lit-BM-13 extracted
from [5], HI-I-II merge of [5,58], BioPlex [4], GO (Gene Ontology) network extracted from [5] (briefly, pairs of proteins were
built if they share GO annotations, GO terms were filtered to those with at most 30 annotated genes), QUBIC [3], CoFrac-
12-15 merge of [6,17]. Every dataset was mapped to the Entrez Gene ID gene space. Observed study biases in the
BioPlex, QUBIC, and CoFrac-12-15 datasets are likely related to their propensity to detect interactions between more
highly expressed genes.
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publications, Rolland et al. could for the first time assess in a truly systematically generated PPI
network the properties of proteins from genes involved in cancer, confirming that they tend to (i)
bind to each other more often, (ii) have higher degrees, and (iii) be more central in a PPI network
than proteins encoded by genes with no known associationwith cancer susceptibility [5]. These
properties were successfully exploited to prioritize candidate genes of loci from cancer-
associated genome-wide association studies (GWASs) by selecting genes within these loci
that are linked via PPIs to well-established cancer genes [5].

Compared to literature-compiled interactome maps, systematically generated maps tend to
display a more homogeneous sampling of protein interactions across the human proteome
when proteins are ranked by publication count (Figure 3). It follows that systematically gener-
atedmaps containmanymore interactions for less-studied genes, and are a powerful source of
information for annotating proteins of unknown function using the ‘guilt-by-association’
approach, the transfer of functional annotations from one protein to its less-studied interaction
partners [14,15]. The discovery of new proteins that are involved in biological processes as
diverse as embryonic development (CoFrac), the cell cycle, and chaperone function (QUBIC),
as well as diseases such as amyotrophic lateral sclerosis (BioPlex) and cancer (HI-II-14),
showcases the broad applicability of this approach using any of the four interactome maps
[3–6]. Furthermore, protein interaction data have been leveraged to predict the subcellular
localization of interaction partners (BioPlex) and new classes of domain–domain interactions
(BioPlex, HI-II-14) [4,5].

Studying the conservation or divergence of protein interactions on evolutionary timescales
has proven difficult largely because comparing PPIs across taxa relied on heterogeneous data
(i.e., data derived from different methods). This heterogeneity has created uncertainty about
whether the observed differences in PPIs between organisms reflect true adaptation or are due
to methodological differences or low assay sensitivities [16]. The CoFrac study is unique in that
it employed the same BPP screening platform to detect protein complexes in nine different
species that span 1 billion years of evolution [6,17]. The authors find that, although 75% of all
human genes arose in metazoa, these younger genes only constitute 40% of the proteins in the
complexes detected in CoFrac. This observation suggests that most biophysically stable
protein complexes arose in unicellular ancestors and were only slightly modified over time
[6]. Furthermore, Wan et al. have shown that the proteins in these ancient complexes tend to be
broadly and abundantly expressed, and display lower average domain complexity [6]. In line
with these findings, proteins in ancient complexes are enriched for core biological processes,
such as metabolism, whereas proteins in more ‘modern’ complexes, defined as those formed
after the emergence of metazoa, are enriched for functions linked to multicellularity [6]. In
addition, the protein subunits of modern complexes display more diverse domain architectures
(i.e., each protein contains multiple distinct domains), a common property of proteins involved
in cell signaling processes [6].

The set of interactions in the interactome is characterized by a continuum of binding affinities
ranging from very weak or transient to highly stable protein interactions. Owing to the technical
challenges of obtaining such affinity data at interactome scale, little is known about how
interaction strength relates to interactome organization. In the QUBIC study, technological
advances of label-free quantitative MS-based proteomics enabled an unprecedented view of
protein association strength at interactome scale [3]. In this study endogenously expressed
baits fused to GFP were affinity purified from HeLa cells, and the interaction stoichiometries –

the relative abundances of each bait–prey pair –were quantified using a label-free MSmethod.
Using a similar methodology, the abundance stoichiometries – the endogenous abundances of
each prey and bait in the HeLa cell lysate – were also quantified. Both measures of stoichiom-
etry were combined to define the strength of every bait–prey association [3]. ‘Strong’

Trends in Biochemical Sciences, Month Year, Vol. xx, No. yy 5
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associations were defined as those pairs of proteins with one-to-one stoichiometry relation-
ships, and are likely part of very stable protein complexes. ‘Weak’ associations between
proteins were defined as those exhibiting sub-stoichiometric bait–prey recoveries (less prey
than bait in the co-immunoprecipitations) and are considered cases in which the prey became
partially dissociated during the affinity purification or where the prey associates with a fraction of
the bait pool in vivo [3]. The weak associations between proteins seem to vastly outnumber the
more stable associations in the human interactome. Systematically removing associations from
the network in silico, starting with the weakest associations (i.e., the lowest stoichiometry),
leads to the rapid disconnection of the network and to the formation of a large number of
isolated subnetworks [3]. Alternatively, iterative removal starting with the strongest associations
tends to leave the network more intact compared to random edge removal. Thus, Hein et al.
suggest that weak protein associations may mediate connections between more stable
complexes and their regulators or adaptors, whereas strong protein associations are formed
within complexes [3].

Interactome Maps of High Quality
In only a couple of years, four systematic human interactomemaps have led to the identification
of almost 93 000 unique protein interactions and associations. This is comparable in scale to
the !115 000 BPPs detected in small-scale studies over several decades [5]. While these four
interactome maps comprise high numbers of systematically generated BPPs, the majority
(90%) were observed in only one of the fourmaps, even for those pairs tested in all four maps (e.
g., only !150 baits were screened by both BioPlex and QUBIC). It has been hypothesized that
these small overlaps (Figure 4) are explained by the large numbers of false positives reported in
individual interactome datasets [18]. In the following sections we argue that these maps are of
high quality, that small overlaps are due to low assay sensitivities and high assay comple-
mentarities, and that previous conclusions of high false positive rates were based on incorrect
assumptions.

HI-II-14, BioPlex, QUBIC, and CoFrac were generated by experts in the field who have honed
protein interaction mapping methods over many years, specifically in pinpointing sources of
false positives and, in turn, prompting their avoidance [8,19–21]. For example, Y2H-based PPI
mapping transitioned from using cDNA libraries to using sequence-validated and arrayable sets
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Figure 4. Overlaps Between the Four Human Interactome Maps. All the displayed datasets (as in Figure 3) were
mapped to the Entrez Gene ID gene space before calculating their overlaps. The interactome maps were not restricted to
the common gene space that was screened by all four studies.
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of ORF clones during screening [22]. These sets have grown into near-complete ‘human
ORFeome collections’, resources of protein-encoding ORF clones with a representative protein
for almost every human gene [2]. Furthermore, rigorous quality-control measures were imple-
mented that eliminated spontaneous auto-activation of DNA-binding fusion proteins (i.e.,
activation of the reporter gene in the absence of the activation domain-containing fusion
construct) [7,23]. MS-based approaches also evolved through the years. The identification
of associated proteins in purified complexes became practical after improvement of computa-
tional algorithms for peptide identification and quantification [24,25], as well as through
experimental modifications and sophisticated computational analysis that more efficiently
removed background and non-specifically bound proteins [26].

High-throughput screening offers many advantages over small-scale studies – such as the
ability to test large sets of positive and negative controls, operate under uniform experimental
settings, identify technical artifacts, and discriminate between signal and noise from the
abundant data. The four human interactome mapping efforts incorporated rigorous quality
control, which followed a general strategy as outlined in Figure 5. Key steps include internal
benchmarking to generate the protein pairs followed by external validation (retesting of a subset
of these pairs in orthogonal assays) to quantify the quality of the generated pairs [21]. More
details on the quality-control process for each map are provided in Box 1 and Figure 5. A few
general observations can be made. Key in the implementation of internal benchmarks for the
MS-based approaches is the combination of state-of-the art quantitative proteomics with
sophisticated machine learning (or probabilistic modeling in the case of QUBIC) using gold
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Figure 5. Comparison of the Different Quality-Control Approaches for Generating the Four Human Interactome Maps. Sources and definitions: BPPs,
biophysical relationships between pairs of proteins; CoFrac, co-fractionation; coIP, co-immunoprecipitation; CORUM [62]; FDR, false discovery rate (the fraction of all
identified BPPs that are false positives); FPR, false positive rate (the fraction of negative BPPs scored as positive); GeneMania [64]; GFP, green fluorescent protein; HA,
hemagglutinin; HumanNet [61]; MAPPIT, mammalian protein–protein interaction trap [11]; MS, mass spectrometry; N/A, not applicable; PAM-SILAC, purify after mixing
– stable isotope labeling of amino acids in cell culture; PCA, protein complementation assay [10]; precision, the fraction of all reported BPPs that are correct; RAB11B,
Ras-related protein Rab-11B; sensitivity, the fraction of ‘real’ BPPs identified; STRING [63]; SVM, support vector machine; wNAPPA, well nucleic acid programmable
protein array [65]; Y2H, yeast two-hybrid.
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standard BPP datasets for training or testing. [309_TD$DIFF]By contrast, the MS-based methods were found
to be more limited in their external validation, likely because of the unavailability of orthogonal
assays at the necessary throughput. Of note are external benchmarking efforts conducted in
HI-II-14, for which 800 PPIs together with hundreds of positive (Lit-BM-13 pairs) and negative
(random protein pairs) controls were tested in three orthogonal binary PPI detection assays,
and in which HI-II-14 and Lit-BM-13 PPIs were recovered at similar rates (Box 1 and Figure 5)
[5]. Thus, contrary to the perception that systematically generated maps are of low quality [18],
multiple lines of evidence suggest that proteome-scale screening efforts to systematically
identify protein interactions can result in datasets of equal or superior reproducibility compared
to interactions identified in focused studies.

Potential Sources of Small Overlaps Between Interactome Maps
Clearly, the data quality is unlikely to explain the observed small overlaps between the maps
(Figure 4). Instead, small overlaps are more likely the result of high rates of false negatives (i.e.,
low sensitivities) as indicated in Figure 5. Why do systematic interactome screening efforts miss
so many PPIs and PPAs, as revealed by assessing these methods using literature-derived gold
standard datasets? One reason is attributable to the complexity of the human proteome. It is
well known that human genes typically give rise to multiple protein isoforms, each of which can
be further processed by post-translational modifications to produce ‘proteoforms’ [27]. Proteo-
forms from the same gene can differ strikingly in the interactions that they are able to form with
other proteins (discussed in more detail in Box 2). Thus, a known interaction between two
proteoforms may not be detected in any of the four systematic studies, [310_TD$DIFF]even if the corre-
sponding genes are part of the search space because the relevant proteoforms are not tested,
either because they are not expressed in the cell lines used in the MS-based approaches or the
corresponding clones are not available in the ORFeome collection. Furthermore, many reported
binary interactions have been reported for protein fragments, not full-length sequences, the

Box 1. Quality-Control Implementations of Interactome Maps
In HI-II-14, interacting pairs of proteins were identified based on scoring yeast growth, a process empirically controlled
by testing in parallel large sets of Lit-BM-13 (positive-control) and random (negative-control) protein pairs. A randomly
selected subset of the identified PPIs [305_TD$DIFF]was retested in three orthogonal binary PPI detection assays together with the
above-mentioned sets of positive- and negative-control pairs ( [306_TD$DIFF]see Figure 5) [5].

In CoFrac, the extent to which a protein pair coelutes is a key factor in associating it with the same protein complex. A
support vector machine (SVM) was trained to discriminate between true and false positive protein associations, and
retained BPPs were clustered to define protein complexes. Eight complexes were selected for external validation using
AP-MS or co-immunoprecipitation, but, without estimates of the sensitivity and precision of both methods by
simultaneous testing of positive and negative controls, there is no estimate of the precision ( [307_TD$DIFF]see Figure 5 in the main
text) [6,21].

In BioPlex, protein association information was derived from proteins copurified from HA-tagged baits. A naive Bayes
machine learner was used to discriminate between true and false protein associations, but its performance has been
assessed using only two baits and their preys as positive and negative controls. Larger sets of positive and negative test
data are likely required for more-robust estimates of sensitivity and FPR ( [307_TD$DIFF]see Figure 5 in the main text) [4].

In QUBIC, the absolute quantities of bait and prey protein were measured in the cell lysate as well as in each
copurification. These values were incorporated into a probabilistic model to determine if a prey could be considered
above background levels. Preys depleted compared to background levels were considered to be false positive BPPs
and were used to estimate false discovery rates (FDRs) of the QUBIC dataset [3]. When assessed against CORUM,
!50% of the protein pairs were recovered by QUBIC at an FDR of 1% (Figure 5) [3]. The advantage of this probabilistic
approach is its independence from training a classifier; however, it is unclear to what extent depleted preys are
representative of potential false positives generated by QUBIC.

It needs to be stressed that, despite all efforts in quality control, calculated performance measures for all four
interactome maps remain rough estimates, given that gold standard datasets themselves are not fully representative
of the physiological interactome and our understanding of sources of false positives is likely to be incomplete.

8 Trends in Biochemical Sciences, Month Year, Vol. xx, No. yy
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original reason being that fragments are more amenable to exogenous expression and tend to
have higher PPI detection sensitivities [28]. The four human interactome mapping efforts are
unlikely to detect interactions for these fragments because they exclusively screened for
interactions between full-length proteins. Lastly, the information about which proteoforms
or protein fragments were used to identify a BPP in a small-scale study may not be reliable
or available in the first place, and hence cannot be curated for addition into literature-derived
gold standard datasets [29] – making it impossible to account for proteomic variations upon
determination of assay sensitivities.

An equally if not more important contributor to small overlaps between interactome maps are
the variations in the experimental methods that lead to different subsets of BPPs being
detected, a phenomenon known as assay complementarity [30,31]. This becomes most
apparent upon comparison of binary versus protein complex detection methods, with the
former detecting PPIs and the latter a mix of PPIs and PPAs. Furthermore, PPIs display a large
continuum of binding affinities, and different BPP detection methods – each based on
fundamentally different modes of detection – inevitably vary in the range of binding affinities
in which they can detect interactions. Variations in the particular parameters of the BPP
detection method itself can delimit the set of detectable BPPs. For example, the use of different
fusion constructs (variable linker lengths between the epitope tag and protein, C- versus N-
terminal tag configurations, etc.) can influence the binding properties of the proteins assayed
[3,32]. The use of different stringencies of washing buffers (variable formulas of detergents,
salts, chaotropic agents, etc.) to remove non-specific binders in AP-MS can influence which
proteins are retained in the affinity purifications [30,31]. More indications of assay complemen-
tarity between the four interactome mapping attempts become apparent upon closer inspec-
tion. The CoFrac map is enriched for ancient proteins (60%) compared to the 20–30% of the
proteins in BioPlex and HI-II-14 that more closely match the estimated fraction of ancient
proteins in the human genome [6]. Furthermore, CoFrac seems to be enriched for very stable
protein complexes, as illustrated by a relatively high overlap of 26% with the very stable protein

Box 2. Leveraging Protein Interactions To Infer Protein Function
Protein interactions represent powerful data for the functional characterization of proteins, and the precise patterns or
dynamics of interactions between related proteins can lead to a deeper understanding of their function. For example,
several groups have investigated the extent to which splice-driven sequence differences between protein isoforms of
the same gene can lead to different protein interactions, and by extension, function [49–51]. The most recent study
described a new methodology in which isoforms are cloned from large numbers of genes and then systematically
profiled for PPIs [51]. Interaction profiles were compared between isoforms of the same gene (366 isoforms, 161 genes)
to provide an indication of their functional divergence. Strikingly, these profiles differ by at least 50% for about half of the
isoform pairs tested, suggesting that functional divergence between alternative isoforms encoded by the same gene is
more widespread than is generally appreciated [51]. Inference of isoform function through properties of their interaction
partners revealed that alternative isoforms behave like distinct proteins within a global network context [51].

Molecular interaction profiling has also uncovered the functional effect of the vast number of genetic variants identified in
human genome sequencing efforts such as GWASs. For example, one study utilized a binary interaction screening
platform to generate and compare protein interaction profiles between hundreds of proteins and their disease allele-
containing counterparts [52]. About one fourth of the disease-associated proteins lost all PPIs compared to the wild-
type protein (‘node removal’ alleles), whereas one third only lost a subset of PPIs (‘edgetic’ alleles). The rates of
interaction perturbation were sevenfold more likely for proteins containing disease-associated variants compared to
common variants [5,52]. Interestingly, existing tools to predict deleterious effects of mutations failed to distinguish
between node removal and edgetic alleles, highlighting the relevance of assessing disease alleles experimentally. Finally,
differences in interaction perturbation between mutant alleles of the same gene correlated with different disease
phenotypes, and the extent of interaction perturbation correlated with disease severity.

These molecular interaction profiling strategies find application beyond the study of protein sequence variations.
Interaction profile changes can be induced by protein phosphorylation [53] or other post-translational modifications
(reviewed in [54]). Further, molecular interaction profiling is not limited to PPIs. Profiling protein–DNA interaction changes
induced by variations in transcription factors or regulatory DNA is an equally powerful tool for the functional char-
acterization of disease-related alleles [52,55,56].
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pairs reported in the QUBIC study [3]. Interestingly, CORUM seems to be biased towards more
stable complexes [3] and ancient proteins [6], and thus gold standard datasets are not
necessarily representative of the properties of the whole interactome.

Even though overlaps between interactome maps are very small, they are still highly significant
given the vast proteome-by-proteome search space from which BPPs are sampled. In line with
this finding is another observation reported by Braun et al. where five different PPI detection
assays were tested on a manually curated gold standard dataset of 92 binary PPIs [30,33]. Of
the 55 PPIs detected by at least one assay, eight PPIs were detected by all five assays. Again,
this overlap appears to be small, but it is extremely unlikely to have occurred under the null-
hypothesis that each of these five methods uniformly sampled a subset of interactions from the
reference set of PPIs. Furthermore, 22 gold standard PPIs were only detected by one of the five
tested assays, overall suggesting that true protein interactions are not equally detectable by
different assays.

These complex and interrelated factors, that must be considered when interpreting overlaps
between BPP datasets, have been unknown or ignored in many studies, leading to large
overestimates of false positive rates of systematically generated yeast interactome datasets
[18,34,35]. With human proteome-scale interactome maps now at hand, it is time to use this
knowledge for a more accurate interpretation of the data. Through further exploration of these
maps, we may gain a better understanding of the types of BPPs that are preferentially detected
in different assays as well as of the factors that differentiate between quality and detectability of
BPPs, insights that will be invaluable to improve interactome benchmarks and to obtain more
detailed views on the composition and nature of the human protein interactome.

On Biophysical Versus Functionally Relevant PPIs
Proteins that can biophysically interact with each other do not necessarily mediate an interac-
tion with a noticeable functional effect within the cell. The term ‘pseudointeractions’ has been
introduced to refer to these non-functional PPIs [21]. Most assays, including Y2H, AP-MS, and
CoFrac-MS, produce datasets of biophysical relationships between proteins whose functional
relevance remains to be demonstrated. One can think of two different sources of biophysical
but non-functional protein pairs in interactome maps [36]. The first source includes pairs of
proteins that can interact or associate but do so only under non-native conditions. For example,
in AP-MS and CoFrac-MS, associated proteins are detected from cell lysates in which the
cellular localization of the proteins is perturbed. In Y2H, proteins are expressed and tested for
interaction in the yeast nucleus. In these artificial settings, biophysical relationships between
pairs of proteins can be detected, although there might not be a single cellular state under
which these proteins would normally meet. The second source of biophysical but non-
functional interactions includes pairs of proteins that actually interact or associate with each
other at a specific time-point within a cell, but for which the interaction is ‘agnostic’, without any
functional relationship or effect. BPPs that are non-functional have been considered to be false
positives [37–39]. We strongly argue against such a classification upon several grounds: first,
the objective of interactomemapping approaches is, because of technical limitations, to identify
BPPs irrespective of their functional relevance; second, disproving the functional relevance of
any BPP is nearly impossible; and third, non-functional BPPs within a cell may actually serve as
an evolutionary reservoir for future functional BPPs during adaptation processes [36]. It is a
subject of active research to understand the extent to which non-functional PPIs can form
under cellular and non-natural (e.g., during experimental manipulations) conditions. Recent
work provides some evidence for natural selection against non-functional PPIs [40,41].

Integration of systematically generated interactome maps with other (ideally, systematically
generated) functional datasets can reveal the degree to which interactome maps are enriched
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with functional relationships between proteins as compared to random networks. All four
interactomemaps have been integrated with functional information such as the set of literature-
curated BPPs, colocalization data, gene ontology (GO) annotations, mouse phenotypes,
coexpression datasets, or kinase–substrate relationships, and all results universally demon-
strate that each map is highly enriched for protein pairs that share functional annotations [3–6].
Interactome datasets derived from the literature (by curating BPPs from small-scale studies)
usually display a higher fraction of BPPs with shared functional annotations compared to
systematically generated interactome datasets [5,18,37,39]. However, this does not mean that
literature-derivedmaps are of higher quality [18,37,39]. First, many published BPPs themselves
have been used to build functional annotation resources, such as the Gene Ontology [42], and
thus some degree of functional enrichment originates from circularity of information flow.
Second, most functional annotations for human proteins originate from non-systematic stud-
ies. Heavily studied proteins tend to have more functional annotations, while less-studied
proteins that exhibit interactions in the vast ‘sparse zone’ covered by the systematic maps will
have few if any annotations (see the GO plot in Figure 3) [5]. Thus, functional enrichments
among PPIs in systematic and non-systematic maps, as an isolated measure, should not be
solely relied upon to make conclusions about the quality or biological significance of inter-
actome maps with respect to each other.

Defining a Reference Map of Human Protein Interactions
The ultimate goal of human interactomemapping is the generation of a referencemap of human
protein interactions, but how can such a reference map be defined? The genome, tran-
scriptome, proteome, and interactome can be defined as the entirety of genes, transcripts,
proteins, and interactions in a given cell. The actual set of expressed transcripts, proteins, or
interactions that exist at a given cellular state represent subsets of these ‘omes’ and can be
considered to be cell state-specific transcriptomes, proteomes, or interactomes themselves.
Y2H detects PPIs in a uniform cellular context, thus building a dataset that resembles an
aggregate interactome that requires integration with gene or protein expression data to derive
cell state-specific interactomes. Alternatively, CoFrac-MS identifies protein complexes that are
endogenous to a given cell line. This is also the case in AP-MS studies if the baits are expressed
from endogenous expression systems, as in the QUBIC study [3]. Furthermore, different
mapping approaches identify complementary sets of biophysical relationships between pro-
teins ranging from direct (binary) interactions to protein co-complex memberships. Given these
methodological and conceptual differences, it is important to consider the different method-
dependent interactome reference maps that can be built.

How complete does an interactome map need to be to be considered as a reference inter-
actome? Estimates on human interactome sizes range from 120 000 to more than one million
[21,43,44], reflecting our vast uncertainties about the proportions of different types of protein
interactions in the interactome and unknown biases in existing interactome maps originating
from the different BPP detection methods. Given our uncertainties in the size of the human
interactome, the completeness of a reference map can only be defined in a practical sense. This
leads us to define a ‘working version’ of a reference map of human protein interactions: all BPPs
that are detectable by a method after a specified number of screens on a protein-by-protein
matrix space that covers at least one isoform for every human protein-coding gene.

Generating such reference maps for the human interactome in this decade is within reach.
Both the published BioPlex and HI-II-14 datasets are intermediates in ongoing projects. These
BPP maps in their current implementation are already substantially larger through increases
in the space of protein pairs interrogated for interaction and the number of completed
screens (BioPlex, http://wren.hms.harvard.edu/bioplex/ and http://thebiogrid.org/; HI-II-14,
http://interactome.baderlab.org and www.ebi.ac.uk/intact/).
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Although such interactome reference maps will be incomplete in their approximation of the
physiological human interactome, the very process of conceptualizing the problem of gener-
ating a reference interactome map and the identification of concrete milestones will help to
direct concerted effort towards their completion.

Concluding Remarks
We have entered an exciting new era of human protein interactome mapping. Systematically
generated and high-quality BPP datasets contain a wealth of functional information that can aid
genome annotation and deepen our understanding of biological processes and cellular
organization. Key challenges towards generating more-complete interactome maps will be
to better understand the types of interactions identified by different methods, improve the
sensitivity and scalability of BPP detection methods, complete current human ORFeome
collections to contain at least one isoform per human protein-coding gene, incorporate the
ability to screen and detect proteoforms in BPP assays, develop strategies to determine
binding affinities of protein pairs at high-throughput, and to build (via binary approaches)
or to dissect (via MS-based approaches) protein complex topologies (see Outstanding
Questions). Important innovations along these lines have already been made. For instance,
crosslinking MS methods are providing higher-resolution topologies of intra-complex contacts
between subunits and are approaching proteome scale [45–47]. In tandem with large-scale
mapping studies, focused studies on conditional interactomes are increasingly defining
cell-, tissue-, and disease- specific interaction landscapes [48]. These and other develop-
ments promise to lead to a better understanding of how binary and co-complex-based
BPP maps can complement each other to provide a more complete picture of the human
protein interactome.
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