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Inhomogeneous temporal processes, like those appearing in human communications, neuron spike trains,
and seismic signals, consist of high-activity bursty intervals alternating with long low-activity periods. In
recent studies such bursty behavior has been characterized by a fat-tailed inter-event time distribution,
while temporal correlations were measured by the autocorrelation function. However, these characteristic
functions are not capable to fully characterize temporally correlated heterogenous behavior. Here we show
that the distribution of the number of events in a bursty period serves as a good indicator of the
dependencies, leading to the universal observation of power-law distribution for a broad class of
phenomena. We find that the correlations in these quite different systems can be commonly interpreted by
memory effects and described by a simple phenomenological model, which displays temporal behavior
qualitatively similar to that in real systems.

I
n nature there are various phenomena, from earthquakes1 to sunspots2 and neuronal activity3, that show
temporally inhomogeneous sequence of events, in which the overall dynamics is determined by aggregate
effects of competing processes. This happens also in human dynamics as a result of individual decision making

and of various kinds of correlations with one’s social environment. These systems can be characterized by
intermittent switching between periods of low activity and high activity bursts4–6, which can appear as a collective
phenomenon similar to processes seen in self-organized criticality7–16. In contrast with such self-organized
patterns intermittent switching can be detected at the individual level as well (see Fig. 1), seen for single neuron
firings or for earthquakes at a single location17–21 where the famous Omori’s law22,23 describes the temporal decay
of aftershock rates at a given spot.

Further examples of bursty behavior at the individual level have been observed in the digital records of human
communication activities through different channels4,24–28. Over the last few years different explanations have
been proposed about the origin of inhomogeneous human dynamics4,24,29, including the single event level30, and
about the impact of circadian and weekly fluctuations31. Moreover, by using novel technology of Radio Frequency
ID’s, heterogeneous temporal behavior was observed in the dynamics of face-to-face interactions32,33. This was
explained by a reinforcement dynamics34,35 driving the decision making process at the single entity level.

For systems with discrete event dynamics it is usual to characterize the observed temporal inhomogeneities by
the inter-event time distributions, P(tie), where tie 5 ti 1 12ti denotes the time between consecutive events. A
broad P(tie)3,25,36 reflects large variability in the inter-event times and denotes heterogeneous temporal behavior.
Note that P(tie) alone tells nothing about the presence of correlations, usually characterized by the autocorrelation
function, A(t), or by the power spectrum density. However, for temporally heterogeneous signals of independent
events with fat-tailed P(tie) the Hurst exponent can assign false positive correlations37 together with the auto-
correlation function (see Supplementary Information). To understand the mechanisms behind these phenomena,
it is important to know whether there are true correlations in these systems. Hence for systems showing fat-tailed
inter-event time distributions, there is a need to develop new measures that are sensitive to correlations but
insensitive to fat tails.

In this paper we define a new measure that is capable of detecting whether temporal correlations are present,
even in the case of heterogeneous signals. By analyzing the empirical datasets of human communication, earth-
quake activity, and neuron spike trains, we observe universal features induced by temporal correlations. In the
analysis we establish a close relationship between the observed correlations and memory effects and propose a
phenomenological model that implements memory driven correlated behavior.
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Results
Correlated events. A sequence of discrete temporal events can be
interpreted as a time-dependent point process, X(t), where X(ti) 5 1
at each time step ti when an event takes place, otherwise X(ti) 5 0. To
detect bursty clusters in this binary event sequence we have to
identify those events we consider correlated. The smallest temporal
scale at which correlations can emerge in the dynamics is between
consecutive events. If only X(t) is known, we can assume two
consecutive actions at ti and ti 1 1 to be related if they follow each
other within a short time interval, ti 1 12ti # Dt30,38. For events with
the duration di this condition is slightly modified: ti 1 12(ti 1 di) #
Dt.

This definition allows us to detect bursty periods, defined as a
sequence of events where each event follows the previous one within
a time intervalDt. By counting the number of events, E, that belong to
the same bursty period, we can calculate their distribution P(E) in a
signal. For a sequence of independent events, P(E) is uniquely deter-
mined by the inter-event time distribution P(tie) as follows:

P E~nð Þ~
ðDt

0
P tieð Þdtie

� �n{1

1{

ðDt

0
P tieð Þdtie

� �
ð1Þ

for n . 0. Here the integral
Ð Dt

0 P tieð Þdtie defines the probability to
draw an inter-event time P(tie) # Dt randomly from an arbitrary
distribution P(tie). The first term of (1) gives the probability that we
do it independently n21 consecutive times, while the second term
assigns that the nth drawing gives a P(tie) . Dt therefore the evolving
train size becomes exactly E 5 n. If the measured time window is

finite (which is always the case here), the integral
Ð Dt

0 P tieð Þdtie~a
where a , 1 and the asymptotic behaviour appears like P(E 5 n) ,
a(n21) in a general exponential form (for related numerical results see
SI). Consequently for any finite independent event sequence the P(E)
distribution decays exponentially even if the inter-event time distri-
bution is fat-tailed. Deviations from this exponential behavior indi-
cate correlations in the timing of the consecutive events.

Bursty sequences in human communication. To check the scaling
behavior of P(E) in real systems we focused on outgoing events of
individuals in three selected datasets: (a) A mobile-call dataset from a
European operator; (b) Text message records from the same dataset;
(c) Email communication sequences26 (for detailed data description
see Methods). For each of these event sequences the distribution of
inter-event times measured between outgoing events are shown in
Fig. 2 (left bottom panels) and the estimated power-law exponent
values are summarized in Table 1. To explore the scaling behavior of
the autocorrelation function, we took the averages over 1,000

randomly selected users with maximum time lag of t 5 106. In
Fig. 2.a and b (right bottom panels) for mobile communication
sequences strong temporal correlation can be observed (for
exponents see Table 1). The power-law behavior in A(t) appears
after a short period denoting the reaction time through the
corresponding channel and lasts up to 12 hours, capturing the
natural rhythm of human activities. For emails in Fig. 2.c (right
bottom panels) long term correlation are detected up to 8 hours,
which reflects a typical office hour rhythm (note that the dataset
includes internal email communication of a university staff).

The broad shape of P(tie) and A(t) functions confirm that human
communication dynamics is inhomogeneous and displays non-
trivial correlations up to finite time scales. However, after destroying
event-event correlations by shuffling inter-event times in the
sequences (see Methods) the autocorrelation functions still show
slow power-law like decay (empty symbols on bottom right panels),
indicating spurious unexpected dependencies. This clearly demon-
strates the disability of A(t) to characterize correlations for hetero-
geneous signals (for further results see SI). However, a more effective
measure of such correlations is provided by P(E). Calculating this
distribution for various Dt windows, we find that the P(E) shows the
following scale invariant behavior

P Eð Þ*E{b ð2Þ

for each of the event sequences as depicted in the main panels of
Fig. 2. Consequently P(E) captures strong temporal correlations in
the empirical sequences and it is remarkably different from P(E)
calculated for independent events, which, as predicted by (1), show
exponential decay (empty symbols on the main panels).

Exponential behavior of P(E) was also expected from results pub-
lished in the literature assuming human communication behavior to
be uncorrelated29,30,39. However, the observed scaling behavior of
P(E) offers direct evidence of correlations in human dynamics, which
can be responsible for the heterogeneous temporal behavior. These
correlations induce long bursty trains in the event sequence rather
than short bursts of independent events.

We have found that the scaling of the P(E) distribution is quite
robust against changes in Dt for an extended regime of time-window
sizes (Fig. 2). In addition, the measurements performed on the
mobile-call sequences indicate that the P(E) distribution remains
fat-tailed also when it is calculated for users grouped by their activity.
Moreover, the observed scaling behavior of the characteristic func-
tions remains similar if we remove daily fluctuations (for results see
SI). These analyses together show that the detected correlated beha-
vior is not an artifact of the averaging method nor can be attributed to
variations in activity levels or circadian fluctuations.

Figure 1 | Activity of single entities with color-coded inter-event times. (a): Sequence of earthquakes with magnitude larger than two at a single location

(South of Chishima Island, 8th–9th October 1994) (b): Firing sequence of a single neuron (from rat’s hippocampal) (c): Outgoing mobile phone call

sequence of an individual. Shorter the time between the consecutive events darker the color.
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Bursty periods in natural phenomena. As discussed above, tem-
poral inhomogeneities are present in the dynamics of several natural
phenomena, e.g. in recurrent seismic activities at the same loca-
tion19,20,21 (for details see Methods and SI). The broad distribution
of inter-earthquake times in Fig. 3.a (right top panel) demonstrates
the temporal inhomogeneities. The characterizing exponent value c
5 0.7 is in qualitative agreement with the results in the literature23 as
c 5 221/p where p is the Omori decay exponent22,23. At the same
time the long tail of the autocorrelation function (right bottom panel)
assigning long-range temporal correlations. Counting the number of
earthquakes belonging to the same bursty period with Dt 5

2…32 hours window sizes, we obtain a broad P(E) distribution
(see Fig. 3.a main panel), as observed earlier in communication
sequences, but with a different exponent value b 5 2.5 (see in
Table 1). This exponent value meets with known seismic
properties as it can be derived as b 5 b/a 1 1, where a denotes the
productivity law exponent40, while b is coming from the well known
Gutenberg-Richter law41. Note that the presence of long bursty trains
in earthquake sequences were already assigned to long temporal
correlations by measurements using conditional probabilities42,43.

Another example of naturally occurring bursty behavior is pro-
vided by the firing patterns of single neurons (see Methods). The

recorded neural spike sequences display correlated and strongly
inhomogeneous temporal bursty behavior, as shown in Fig. 3.b.
The distributions of the length of neural spike trains are found to
be fat-tailed and indicate the presence of correlations between con-
secutive bursty spikes of the same neuron.

Memory process. In each studied system (communication of
individuals, earthquakes at given location, or neurons) quali-
tatively similar behaviour was detected as the single entities
performed low frequency random events or they passed through
longer correlated bursty cascades. While these phenomena are
very different in nature, there could be some element of simi-
larities in their mechanisms. We think that this common feature
is a threshold mechanism.

From this point of view the case of human communication data
seems problematic. In fact generally no accumulation of stress is
needed for an individual to make a phone call. However, according
to the Decision Field Theory of psychology44, each decision (includ-
ing initiation of communication) is a threshold phenomenon, as the
stimulus of an action has to reach a given level for to be chosen from
the enormously large number of possible actions.

As for earthquakes and neuron firings it is well known that they
are threshold phenomena. For earthquakes the bursty periods at a
given location are related to the relaxation of accumulated stress after
reaching a threshold7–9. In case of neurons, the firings take place in
bursty spike trains when the neuron receives excitatory input and its
membrane potential exceeds a given potential threshold45. The spikes
fired in a single train are correlated since they are the result of the
same excitation and their firing frequency is coding the amplitude of
the incoming stimuli46.

The correlations taking place between consecutive bursty events
can be interpreted as a memory process, allowing us to calculate the
probability that the entity will perform one more event within a Dt
time frame after it executed n events previously in the actual cascade.
This probability can be written as:

Figure 2 | The characteristic functions of human communication event sequences. The P(E) distributions with various Dt time-window sizes (main

panels), P(tie) distributions (left bottom panels) and average autocorrelation functions (right bottom panels) calculated for different communication

datasets. (a) Mobile-call dataset: the scale-invariant behavior was characterized by power-law functions with exponent values a^0:5, b^4:1 and c^0:7
(b) Almost the same exponents were estimated for short message sequences taking values a^0:6, b^3:9 and c^0:7. (c) Email event sequence with

estimated exponents a^0:75, b^2:5 and c^1:0. A gap in the tail of A(t) on figure (c) appears due to logarithmic binning and slightly negative

correlation values. Empty symbols assign the corresponding calculation results on independent sequences. Lanes labeled with s, m, h and d are denoting

seconds, minutes, hours and days respectively.

Table 1 | Characteristic exponents of the (a) autocorrelation func-
tion, (b) bursty number, (c) inter-event time distribution functions
and n memory functions calculated in different datasets (see SI)
and for the model study

a b c n

Mobile-call sequence 0.5 4.1 0.7 3.0
Short message sequence 0.6 3.9 0.7 2.8
Email sequence 0.75 2.5 1.0 1.3
Earthquake sequence (Japan) 0.3 2.5 0.7 1.6
Neuron firing sequence 1.0 2.3 1.1 1.3
Model 0.7 3.0 1.3 2.0
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p nð Þ~
P?

E~nz1 P Eð ÞP?
E~n P Eð Þ : ð3Þ

Therefore the memory function, p(n), gives a different representation
of the distribution P(E). The p(n) calculated for the mobile call
sequence are shown in Fig. 4.a for trains detected with different
window sizes. Note that in empirical sequences for trains with size
smaller than the longest train, it is possible to have p(n) 5 1 since the
corresponding probability would be P(E 5 n) 5 0. At the same time
due to the finite size of the data sequence the length of the longest
bursty train is limited such that p(n) shows a finite cutoff.

We can use the memory function to simulate a sequence of corre-
lated events. If the simulated sequence satisfies the scaling condition
in (2) we can derive the corresponding memory function by substi-
tuting (2) into (3), leading to:

p nð Þ~ n
nz1

� �n

ð4Þ

with the scaling relation (see SI):

b~nz1: ð5Þ

In order to check whether (5) holds for real systems and whether
the memory function in (4) describes correctly the memory in real
processes we compare it to a memory function extracted from an
empirical P(E) distributions. We selected the P(E) distribution of the
mobile call dataset with Dt 5 600 second and derived the corres-
ponding p(n) function. The complement of the memory function,
12p(n), is presented in Fig. 4.b where we show the original function
with strong finite size effects (grey dots) and the same function after
logarithmic binning (black dots).

Taking equation (4) we fit the theoretical memory function to the
log-binned empirical results using least-squares method with only
one free parameter, u. We find that the best fit offers an excellent
agreement with the empirical data (see Fig. 4.b and also Fig. 4.a) with
u 5 2.971 6 0.072. This would indicate b^3:971 through (5), close
to the approximated value b^4:1, obtained from directly fitting the
empirical P(E) distributions in the main panel of Fig. 2.a (for fits of
other datasets see SI). In order to validate whether our approxi-
mation is correct we take the theoretical memory function p(n) of
the form (4) with parameter u 5 2.971 and generate bursty trains of
108 events. As shown in Fig. 5.c, the scaling of the P(E) distribution
obtained for the simulated event trains is similar to the empirical
function, demonstrating the validity of the chosen analytical form for
the memory function.

Model study. As the systems we analysed are of quite different nature,
from physics (earthquakes) to social (human communication) and
biological (neuron spikes) systems, finding a single mechanistic
model to describe them all is impossible. Therefore, our goal is not
to reproduce in detail our observations for the different systems but to
identify minimal conditions or common characteristics that may play
a role in all of their dynamics and are sufficient to reproduce the
observed overall temporal behaviour. Here we define a phenome-
nological model which integrates the deliberated features and study
how they are related to each other.

Reinforcement dynamics with memory. We assume that the
investigated systems can be described with a two-state model,
where an entity can be in a normal state A, executing independent
events with longer inter-event times, or in an excited state B,
performing correlated events with higher frequency, corresponding
to the observed bursts. To induce the inter-event times between the
consecutive events we apply a reinforcement process based on the
assumption that the longer the system waits after an event, the larger
the probability that it will keep waiting. Such dynamics shows
strongly heterogeneous temporal features as discussed in34,35. For
our two-state model system we define a process, where the
generation of the actual inter-event time depends on the current
state of the system. The inter-event times are induced by the
reinforcement functions that give the probability to wait one time
unit longer after the system has waited already time tie since the last
event. These functions are defined as

fA,B tieð Þ~
tie

tiez1

� �mA,B

ð6Þ

where mA and mB control the reinforcement dynamics in state A
and B, respectively. These functions follow the same form as
the previously defined memory function in (4) and satisfy the
corresponding scaling relation in (5). If mA=mB the characteristic
inter-event times at state A and B become fairly different, which
induces further temporal inhomogeneities in the dynamics. The

Figure 3 | The characteristic functions of event sequences of natural
phenomena. The P(E) distributions of correlated event numbers with

various Dt time-window sizes (main panels), P(tie) distributions (right top

panels) and average autocorrelation functions (right bottom panels). (a)

One station records of Japanese earthquake sequences from 1985 to 1998.

The functional behavior is characterized by the fitted power-law functions

with corresponding exponents a^0:3, b^2:5 and c^0:7. Inter-event

times for P(tie) were counted with 10 second resolution. (b) Firing

sequences of single neurons with 2 millisecond resolution. The

corresponding exponents take values as a^1:0, b^2:3 and c^1:1. Empty

symbols assign the calculation results on independent sequences. Lanes

labeled with ms, s, m, h, d and w are denoting milliseconds, seconds,

minutes, hours, days and weeks respectively.
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actual state of the system is determined by transition probabilities
shown in Fig. 5.b, where to introduce correlations between
consecutive excited events performed in state B we utilize the
memory function defined in equation (4).

To be specific, the model is defined as follows: first the system
performs an event in a randomly chosen initial state. If the last event
was in the normal state A, it waits for a time induced by fA(tie), after
which it switches to excited state B with probability p and performs
an event in the excited state, or with probability 12p stays in the
normal state A and executes a new normal event. In the excited state
the inter-event time for the actual event comes from fB(tie) after
which the system decides to execute one more excited event in state
B with a probability p(n) that depends on the number n of excited

events since the last event in normal state. Otherwise it switches back
to a normal state with probability 12p(n). Note that a similar model
without memory was already defined in the literature47.

The numerical results predicted by the model are summarized in
Fig. 5 and Table 1. We find that the inter-event time distribution in
Fig. 5.c reflects strong inhomogeneities as it takes the form of a scale-
free function with an exponent value c 5 1.3, satisfying the relation c
5 mA 1 1. As a result of the heterogeneous temporal behavior with
memory involved, we detected spontaneously evolving long tem-
poral correlations as the autocorrelation function shows a power-
law decay. Its exponent a 5 0.7 (see Fig. 5.d) also satisfies the relation
a 1 c 5 2 (see SI). The P(E) distribution also shows fat-tailed beha-
vior for each investigated window size ranging fromDt 5 1 to 210 (see
Fig. 5.a). The overall signal here is an aggregation of correlated long
bursty trains and uncorrelated single events. This explains the weak
Dt dependence of P(E) for larger window sizes, where more inde-
pendent events are merged with events of correlated bursty cascades,
which induces deviation of P(E) from the expected scale-free beha-
vior. The P(E) distributions can be characterized by an exponent b 5

3.0 in agreement with the analytical result in (5) and it confirms the
presence of correlated bursty cascades. In addition, even if we fix the
value of b and c, the a exponent satisfies the condition a , c , b, an
inequality observed in empirical data (see Table 1).

Discussion
In the present study we introduced a new measure, the number of
correlated events in bursty cascades, which detects correlations and
heterogeneity in temporal sequences. It offers a better characteriza-
tion of correlated heterogeneous signals, capturing a behavior that
cannot be observed from the inter-event time distribution and the
autocorrelation function. The discussed strongly heterogeneous
dynamics was documented in a wide range of systems, from human
dynamics to natural phenomena. The time evolution of these systems
were found to be driven by temporal correlations that induced scale-
invariant distributions of the burst lengths. This scale-free feature
holds for each studied system and can be characterized by different
system-dependent exponents, indicating a new universal property of
correlated temporal patterns emerging in complex systems.

We found that the bursty trains can be explained in terms of
memory effects, which can account for the heterogeneous temporal
behavior. In order to better understand the dynamics of temporally
correlated bursty processes at single entity level we introduced a
phenomenological model that captures the common features of the
investigated empirical systems and helps us understand the role they
play during the temporal evolution of heterogeneous processes.

Figure 4 | Empirical and fitted memory functions of the mobile call sequence (a) Memory function calculated from the mobile call sequence using
different Dt time windows. (b) 12p(n) complement of the memory function measured from the mobile call sequence with Dt 5 600 second and fitted

with the analytical curve defined in equation (4) with n 5 2.971. Grey symbols are the original points, while black symbols denotes the same function after

logarithmic binning. (c) P(E) distributions measured in real and in modeled event sequences.

Figure 5 | Schematic definition and numerical results of the model study.
(a) P(E) distributions of the synthetic sequence after logarithmic binning

with window sizes Dt 5 1…1024. The fitted power-law function has an

exponent b 5 3.0. (b) Transition probabilities of the reinforcement model

with memory. (c) Logarithmic binned inter-event time distribution of the

simulated process with a maximum interevent time tmax
ie ~106. The

corresponding exponent value is c 5 1.3. (d) The average logarithmic

binned autocorrelation function with a maximum lag tmax 5 104. The

function can be characterized by an exponent a 5 0.7. Simulation results

averaged over 1000 independent realizations with parameters mA 5 0.3,

mB 5 5.0, n 5 2.0, p 5 0.1 and T 5 109. For the calculation we chose the

maximum inter-event time tmax
ie ~105, which is large enough not to

influence short temporal behavior, but it increases the program

performance considerably.
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Methods
Data processing. To study correlated human behavior we selected three datasets
containing time-stamped records of communication through different channels for a
large number of individuals. For each user we extract the sequence of outgoing events
as we are interested in the correlated behavior of single entities. The datasets we have
used are as follows: (a) A mobile-call dataset from a European operator covering
,3253106 million voice call records of ,6.53106 users during 120 days48. (b) Text
message records from the same dataset consisting of 125.5 3 106 events between the
same number of users. Note that to consider only trusted social relations these events
were executed between users who mutually called each other at least one time during
the examined period. Consecutive text messages of the same user with waiting times
smaller than 10 seconds were considered as a single multipart message49 though the
P(tie) and A(t) functions do not take values smaller than 10 seconds in Fig. 2.b. (c)
Email communication sequences of 2, 997 individuals including 20.23104 events
during 83 days26. From the email sequence the multicast emails (consecutive emails
sent by the same user to many other with inter-event time 0) were removed in order to
study temporally separated communication events of individuals. To study
earthquake sequences we used a catalog that includes all earthquake events in Japan
with magnitude larger than two between 1st July 1985 and 31st December 199850. We
considered each recorded earthquake as a unique event regardless whether it was a
main-shock or an after-shock. For the single station measurement we collected a time
order list of earthquakes with epicenters detected at the same region7,21 (for other
event collection methods see SI). The resulting data consists of 198, 914 events at 238
different regions. The utilized neuron firing sequences consist of 31, 934 outgoing
firing events of 1, 052 single neurons which were collected with 2 millisecond
resolution from rat’s hippocampal slices using fMCI techniques51,52.

Random shuffling of inter-event times of real sequences. To generate independent
event sequences from real data in Fig. 2 and 3 (empty symbols) we randomly shuffled
the inter-event times of entities (persons, locations, and neurons) allowing to change
tie values between any entities but keeping the original event number unchanged for
each of them. This way the original inter-event time and node strength distributions
remain unchanged but we receive null model sequences where every temporal
correlations were destroyed. The aim of this calculation was twofold as to show on real
data that the autocorrelation function still scales as a power-law after temporal
correlations are removed, and that the P(E) distribution decays exponentially for
uncorrelated signals. The presented P(E) distributions were calculated with one Dt
window size to demonstrate this behaviour.
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