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ABSTRACT

Human papillomavirus 18 (HPV18) is the second most carcinogenic HPV type, after HPV16, and it accounts for approximately
12% of squamous cell carcinoma (SCC) as well as 37% of adenocarcinoma (ADC) of the cervix worldwide. We aimed to evaluate
the worldwide diversity and carcinogenicity of HPV18 genetic variants by sequencing the entire long control region (LCR) and
the E6 open reading frame of 711 HPV18-positive cervical samples from 39 countries, taking advantage of the International
Agency for Research on Cancer biobank. A total of 209 unique HPV18 sequence variants were identified that formed three phylo-
genetic lineages (A, B, and C). A and B lineages each divided into four sublineages, including a newly identified candidate B4 sub-
lineage. The distribution of lineages varied by geographical region, with B and C lineages found principally in Africa. HPV18
(sub)lineages were compared between 453 cancer cases and 236 controls, as well as between 81 ADC and 160 matched SCC cases.
In region-stratified analyses, there were no significant differences in the distribution of HPV18 variant lineages between cervical
cancer cases and controls or between ADC and SCC. In conclusion, our findings do not support the role of HPV18 (sub)lineages
for discriminating cancer risk or explaining why HPV18 is more strongly linked with ADC than SCC.

IMPORTANCE

This is the largest and most geographically/ethnically diverse study of the genetic variation of HPV18 to date, providing a com-
prehensive reference for phylogenetic classification of HPV18 sublineages for epidemiological and biological studies.

High-risk human papillomavirus (HPV) types are the etiolog-
ical agents of cervical cancer. HPV18 was first described in

1984 (1) and is the prototype member of the alpha-7 HPV species.
Based upon its enrichment in cervical cancer compared to the
level in cytologically normal women (2) and its presence in 16% of
cervical cancers worldwide (3), HPV18 is widely accepted as the
second most carcinogenic HPV type after HPV16.

HPV18 is known to be present in a higher proportion of cervi-
cal adenocarcinomas (ADC) (�37%) than cervical squamous cell
carcinomas (SCC) (�12%), an attribute that is shared by other
members of the alpha-7 species (3). This suggests a phylogenetic
trait denoting a tendency to cause ADC, and previous studies have
suggested that the association with ADC is driven by particular
HPV18 variant lineages (4–6).

Most HPV18 infections are asymptomatic and are cleared by
the immune system. Factors that favor a small proportion of
HPV18 infections to progress to cervical cancer are poorly under-
stood, but studies have implicated a role for HPV18 genetic vari-
ation (7–11).

Based upon common phylogenetic patterns of single-nucleo-
tide polymorphisms (SNPs) in the L1 viral genomic region,
HPV18 variants originally were classified as European (E), Asian
Amerindian (AA), or African (AFR) (12). This classification has
been superseded by a whole viral genome sequencing approach
that has defined three major lineages (A, B, and C) and additional
sublineages (A1 to A5 and B1 to B3) (13) that can be largely trans-
lated to the historical nomenclature (A1 and A2 � AA, A3 to A5 �
E, and B/C � AFR) (14). In the whole-genome approach, differ-
ences of �1.0% define variant lineages, and differences of 0.5 to
0.9% define sublineages.

Using a multicenter case-control study design based upon
HPV18-positive samples from the biobank at the International

Agency for Research on Cancer (IARC), the aim of the current
study was to evaluate the genetic diversity of HPV18 worldwide
and to explore the association between HPV18 genetic variants
and the risk for cervical cancer in geographically and ethnically
diverse female populations.

MATERIALS AND METHODS
Origin of clinical specimens. The IARC has coordinated cervical cancer
case series, cervical cancer case-control studies, and population-based
HPV prevalence surveys in a large number of countries around the world
(15–35 and an as-yet-unpublished study from Rwanda). The collection of
samples has spanned a period of over 25 years from 1989 until 2014 and
predates the introduction of HPV vaccines. Informed consent was ob-
tained from all participants, and the studies were approved by the IARC
Ethical Review Committee. Cervical samples (exfoliated cells or tissue
biopsy specimens) derived from these studies have been comprehensively
genotyped for HPV type by using a standardized and well-validated pro-
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tocol (general primer GP5�/6� PCR-enzyme immunoassay followed by
reverse line blot assay) (36) in one centralized laboratory (Molecular Pa-
thology Unit, Department of Pathology, VU University Medical Center,
Amsterdam, The Netherlands). All HPV18-positive cervical samples in
the IARC biobank were selected for the current analysis, without exclu-
sion, and were categorized into the following regions: northern Africa,
sub-Saharan Africa, eastern Asia and Pacific, South/Central Asia, Europe,
North America, and South America/Central America.

PCR and DNA sequencing. DNA extraction from stored samples was
performed using a High-Pure PCR template preparation kit (Roche,
Mannheim, Germany) or a QIAamp DNA minikit (Qiagen, Hilden, Ger-
many). PCR was performed using a series of M13-tagged HPV18-spe-
cific primer pairs that were designed to amplify overlapping regions of
the HPV18 long control region (LCR) and E6 open reading frame in
order to cover the entire region (see Table S1 in the supplemental
material). If a set of three overlapping primers was not able to amplify
a sample, then a set of five overlapping primers creating smaller am-
plicons was used. Each sample underwent two rounds of PCR for each
primer pair: 2 �l of DNA in a 10-�l PCR followed by 2.5 �l of PCR
product in a 25-�l PCR using the Qiagen multiplex PCR master mix
(Qiagen, Hilden, Germany). PCR success was evaluated on a 1.5%
agarose gel, and successful reactions were Sanger sequenced in both
directions at GATC Biotech (Constance, Germany) using universal
M13 sequencing primers, the sequences of which had been incorpo-
rated into the PCR products.

The forward and reverse sequence traces of three or five amplicons for
each sample were compiled to provide one sequence encompassing the
entire HPV18 LCR and E6 open reading frame (nucleotides 7137 to 581)
using Geneious v 6.1.8 (Biomatters, Auckland, New Zealand) and com-
pared to the corresponding region of the HPV18 reference sequence
(NCBI GenBank accession number X05105 (37), revised as previously
described (38) and downloaded from PaVE (pave.niaid.nih.gov) (39).
Single nucleotide polymorphisms (SNPs) were confirmed with examina-
tion of the sequence chromatograms. All unique sequences were com-
pared pairwise by clustalw2 (http://www.ebi.ac.uk/Tools/msa/clustalw2)
using default settings.

Case-control analysis. Samples were classified as either controls (in-
cluding normal cells [n � 171], atypical squamous cells of undetermined
significance [ASCUS, n � 4], low-grade intraepithelial lesion [LSIL, n �
42], or cervical intraepithelial neoplasia grade 1 [CIN1, n � 6]) or cases
(squamous cell carcinoma [n � 339], adenocarcinoma [n � 56], adeno-
squamous cell carcinoma [n � 25], or unspecified invasive cervical cancer
[n � 33]). Samples from population-based HPV prevalence studies for
which histology and cytology were unavailable also were classified as con-
trols (n � 13). Samples reported as cervical intraepithelial neoplasia
(CIN) grade 2 or 3 or high-grade squamous intraepithelial lesion (HSIL)
were excluded from the case-control analysis (n � 19), as were three
samples for which sublineage was not able to be determined (two cases
and one control). Region-specific associations between variant (sub)-
lineage and case-control status were assessed by 2-sided P values aris-
ing from Fisher’s exact test without combining sublineages. Region-
specific odds ratios (ORs) and 95% exact confidence intervals (CIs) for
the A1 sublineage were calculated against the combination of all other
A sublineages.

Case-case analysis. ADC cases included samples diagnosed as adeno-
carcinoma (n � 56) or adenosquamous cell carcinoma (n � 25). Two
SCC cases were matched by country to each ADC case and, as close as
possible, by age. For two of the ADC cases, there was only one SCC case
available for matching. The average age was 45.8 and 46.7 years for ADC
and SCC cases, respectively. Statistical analysis was performed as de-
scribed above for the case-control analysis.

Nucleotide sequence accession numbers. Sequences determined in
the course of this work are available from GenBank under accession num-
bers KP749485 to KP749680.

RESULTS
Sequencing. The entire LCR and E6 open reading frame were
sequenced for a total of 711 HPV18-positive cervical samples from
39 countries, including two countries in northern Africa, nine in
sub-Saharan Africa, nine in eastern Asia and the Pacific, five in
South/Central Asia, three in Europe, two in North America, and
nine in South/Central America (Table 1).

A total of 189 variations were identified among the 1,302 bases
in the LCR and E6 region of the HPV18 genome (14.5% variable
nucleotide positions), resulting in 209 unique sequences, or vari-
ants, of which 196 were not previously described (see Table S2 in
supplemental material). In the LCR there were 126 SNPs, 12
deletions (only three of which were present in more than one
sample), and one duplication of 82 bp (present in one sample
only). In E6 there were 50 SNPs, 23 of which could result in
amino acid changes. The maximum pairwise difference of the
LCR and E6 open reading frame sequence between any two
variants was 2.72%.

Phylogenetic analysis. The variants clustered into three main
groups (Table 2) corresponding to the previously described lin-
eages A, B, and C (13). In the A lineage, 35 variants, representing
248 samples, were of the same A1 sublineage as the HPV18 refer-
ence sequence. Four variants, representing six samples, corre-
sponded to the previously reported A2 sublineage. A3 and A4
sublineages accounted for 86 variants representing 303 samples.
A3 appeared to be uniquely defined by the SNP C7486T and A4 to
be uniquely defined by the SNP A41G (see Table S2 in supplemen-
tal material), but this observation is not consistent with the previ-
ously described A3 whole-genome sequence GQ180786 (13),
which has 7468C and 41G. Hence, A3 and A4 sublineage variants
were combined into one sublineage for the course of this analysis.
Twenty-three variants, representing 38 samples, corresponded to
the previously reported A5 sublineage.

In the B lineage we observed 24 variants, representing 46 sam-
ples, that corresponded to the previously reported B1 sublineage;
16 variants, representing 37 samples, corresponded to the previ-
ously described B2 sublineage; and eight variants, representing 18
samples, corresponded to the previously described B3 sublineage.
In addition, we observed five variants representing six samples
that appeared to form a new candidate, sublineage B4 (Table 2).
This sublineage was seen in samples from Kenya, Rwanda, Cuba,
and Brazil and is approximately 1% different from the other B
sublineages in the LCR and E6 region.

We observed five variants representing six samples in the C
lineage, with no clear indication of sublineages. Only three vari-
ants, each represented by one sample, did not meet the classifica-
tion described above. Two variants appeared B-like in LCR but
A-like in E6 (possibly the amplification of two different variants
present in the same sample), and a third variant shared sequence
similarity with both the A5 and the A3/A4 sublineages (see Table
S2 in supplemental material).

In total, there were 38 nucleotide positions in the LCR and E6
region that could discriminate at least two sublineages from each
other (Table 2). Only two of these resulted in an amino acid
change (N129K at nucleotide position 491 and H133Y at nucleo-
tide position 501). At the lineage level, nine SNPs were diagnostic,
that is, consistently present and unique (dark gray shaded nucle-
otide positions in Table 2). Each lineage had at least one diagnostic
SNP (e.g., C at 7161 for A lineage, G at 7323 for B lineage, and A at
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437 for C lineage). Most sublineages had one or more positions
that discriminated a sublineage from the other sublineages within
the same lineage (light gray positions in Table 2), but only A1 (A at
position 7567), A2 (G at position 7511), and candidate B4 (dele-

tion from 7162 to 7168, 500A and 501T) sublineages had diagnos-
tic SNPs that were unique for only that sublineage.

Many other positions were polymorphic within one or more
(sub)lineages but did not appear to define phylogenetic sub-
groups (see Table S2 in supplemental materials). Some poten-
tial phylogenetic stratification was observed within A1 (four
variants representing 21 samples, all with A89C and A218T),
A3/A4 (13 variants representing 72 samples, all with C7164A and
C7184T; 21 variants representing 48 samples, all with T7657C),
and A5 (seven variants representing nine samples, all with A536C
and T553G).

Geographical distribution. The distribution of HPV18 (sub)-
lineages varied by geographical region (Fig. 1), with a predomi-
nance of the A lineage in most regions except sub-Saharan Africa,
where the B lineage predominated. Sub-Saharan Africa showed
the broadest range of (sub)lineages. The B lineage also accounted
for a small fraction of samples from northern Africa and South/
Central America. The C lineage was specific to Africa.

In the A lineage, the A1 sublineage predominated in eastern
Asia and the Pacific, whereas the A3/A4 sublineage strongly pre-
dominated in Europe but also in northern Africa, South/Central
Asia, and South/Central America. The majority of A5 isolates were
detected in Africa.

Case-control analysis. The distribution of HPV18 variant
(sub)lineages was compared between invasive cervical cancer
cases (n � 453, all histologies) and controls (n � 236) after exclu-
sion of two cases and one control of undetermined sublineage.
Within each region, the distribution of the variant lineages (A, B,
and C) did not differ significantly between the cases and controls
(Table 3).

At the sublineage level, A1 variants were overrepresented in
cases compared to controls in eastern Asia and the Pacific (OR,
2.8; 95% CI, 1.6 to 4.9) (Table 3). However, the opposite was true
in South/Central Asia (OR, 0.2; 95% CI, 0.0 to 0.6), driven by a
significant overrepresentation of A3/A4 variants in cases versus
controls (see Table S3 in supplemental material). No marked dif-
ferences in the distribution of sublineages were observed by case-
control status in other regions (see Table S3).

Results of the case-control analysis were not materially affected
upon the reinclusion of the 19 excluded HSIL/CIN2/3 as cases or
in sensitivity analyses restricting to cases with single HPV18 infec-
tion or SCC histology only.

Case-case analysis. Upon comparison of 81 ADC and 160
matched SCC cases, the distribution of variant lineages did not
differ between ADC and SCC (Table 4), either overall or within
any geographical region. Furthermore, no significant differences
were observed when variants were classified at the sublineage level
or when the 56 adenocarcinomas and 25 adenosquamous cell car-
cinomas were analyzed separately (data not shown).

DISCUSSION

Among 711 HPV18-positive cervical samples, with a high propor-
tion of isolates from Africa and Asia, we observed 209 unique
variants in the LCR and E6 region, which is greater than that of any
previous report (13). In addition to previously described lineages
and sublineages (A1 to A5, B1 to B3, and C), we saw evidence of a
candidate B4 sublineage. We also saw potential sublineages within
the A lineage, the most common of these being 13 A3-type variants
(representing 72 samples), all with C7164A and C7184T, a com-

TABLE 1 Geographic distribution of 711 HPV18-positive cervical
samples

Region and country

No. of samples

Case Control HSIL/CIN2/3 Total

Northern Africa 48 5 0 53
Algeria 26 4 0 30
Morocco 22 1 0 23

Sub-Saharan Africa 75 41 7 123
Benin 1 0 0 1
Guinea 2 9 1 12
Kenya 18 0 2 20
Mali 16 1 0 17
Nigeria 1 12 2 15
Rwanda 0 18 2 20
South Africa 18 1 0 19
Tanzania 12 0 0 12
Uganda 7 0 0 7

Eastern Asia and Pacific 184 90 7 281
China 0 13 5 18
Fiji 0 11 0 11
Indonesia 24 0 0 24
South Korea 8 4 0 12
Mongolia 6 24 0 30
Philippines 76 2 0 78
Thailand 69 15 0 84
Vanuatu 1 12 2 15
Vietnam 0 9 0 9

South/Central Asia 31 74 5 110
Bhutan 5 53 3 61
India 24 16 2 42
Iran 1 1 0 2
Nepal 0 4 0 4
Pakistan 1 0 0 1

Europe 24 14 0 38
Georgia 10 9 0 19
Poland 9 5 0 14
Spain 5 0 0 5

North America 9 0 0 9
Canada 8 0 0 8
United States 1 0 0 1

South/Central America 84 13 0 97
Argentina 8 7 0 15
Bolivia 2 0 0 2
Brazil 15 3 0 18
Chile 7 2 0 9
Colombia 3 0 0 3
Cuba 3 0 0 3
Panama 11 0 0 11
Paraguay 26 0 0 26
Peru 9 1 0 10

Total 455 237 19 711
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bination of SNPs that also has been recorded in A3-type variants
elsewhere (10, 40, 41).

The LCR was confirmed to contain much more phylogenetic
information than E6 and distinguished nine (sub)lineages (A1,
A2, A3/A4, A5, B1, B2, B3, candidate B4, and C) without the
requirement for E6. However, even LCR and E6 combined did not
allow us to clearly distinguish A3 from A4 variants. A3 appeared to
be defined by C7486T and A4 by A41G, but this classification did
not hold true for the previously described A3 whole-genome se-
quence GQ180786 (13). For epidemiological studies based on
the detection of SNPs in E6 and/or the LCR, we propose a
practical classification of variant lineages using 38 nucleotide
positions (29 and nine positions in LCR and E6, respectively)
that can each distinguish at least two of the nine (sub)lineages
described above from each other (Table 2). Nevertheless, there
is much redundancy in this classification, so that not all of these
positions are required for classification. Indeed, there are a smaller
number of diagnostic SNPs that are specific for a given (sub)lin-
eage.

Our LCR/E6 classification fits with other HPV18 sequences

reported in the literature (10, 12, 40–50) and is consistent with
lineage definitions based on the gold standard approach of HPV18
whole-genome sequencing (13). Although based on LCR and E6
only, our analysis included many novel variants, particularly
among previously underrepresented A5 and B (sub)lineages,
which would warrant sequencing the whole genomes in order to
strengthen the full picture of HPV18 genetic evolution.

As we have shown previously for HPV16 (51), HPV33 (52),
and HPV45 (53), the distribution of HPV18 variant (sub)lineages
around the world was confirmed to be geographically/ethnically
specific (Fig. 1). Consistent with previous multiregional reports
(5, 12, 13), we saw a predominance of B lineages (previously
named African variants [14]) in sub-Saharan Africa, whereas
there was a strong predominance of A3/A4 lineages (previously
named European) in Europe. Consistent with the previous no-
menclature of A1/A2 lineages as Asian-Amerindian variants (14),
the A1 sublineage was found predominantly in eastern Asia and
the Pacific and also was frequent in South/Central Asia and the
Americas. We additionally showed that C lineage variants were
highly specific for Africa, although they were rarely detected in our

FIG 1 Distribution of HPV18 (sub)lineages by geographical region, irrespective of cervical diagnosis.

TABLE 2 Description of HPV18 variant (sub)lineages based on distinguishing positions in the LCR and E6a

a Only SNPs that are consistent for one or more sublineages are included. Nucleotide positions that are diagnostic for a lineage are shaded dark gray. SNPs that are shaded light gray
discriminate the sublineage from other sublineages within the same lineage. Boldface indicates an SNP resulting in a change of amino acid: N129K at nucleotide position 491 for the
C-to-A SNP and H133Y at nucleotide position 501. Three samples of undetermined sublineage are not shown.
b The deletions (Del) are positions 7162 to 7168 and 7245 to 7251.
c We did not observe a T at position 7551 for A1 isolates or an A at position 7857 for B1 isolates, but both are reported in the literature (13).
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series and appear to have been present in only a few cases in pre-
vious studies (12, 13, 46, 47). Of note, the A5 sublineage, which
has only recently been reported in a single isolate from Thailand
(13, 54), was found in a higher proportion of samples from north-
ern Africa than elsewhere. The fact that the LCR of A5 sublineage
variants share many features with B and C lineage variants
suggests that northern African HPV18 isolates represent a pre-
viously understudied branch of HPV18 evolution, as observed
for HPV16 (51).

Due to the geographic heterogeneity of variant (sub)lineages,
we performed case-control comparisons stratified by region. Us-
ing this approach, we were not able to observe any difference in
cervical cancer risk between HPV18 variants at the lineage level
(Table 3).

Other than one small study that detected a nonsignificant dif-
ference of lineage for controls versus CIN3� cases in Spain (45),
previous studies have compared HPV18 variants and clinical out-
come using the older E/AA/AFR nomenclature. No significant
difference in CIN3� risk was observed between E/AA and AFR
variants during 7 years of follow-up of 221 HPV18-positive
women from Costa Rica (55), and no differences were observed in
the distribution of HPV18 E/AA versus AFR lineages between 47
controls and 51 cancers in the United States (40) or in two smaller
comparisons of cancers and controls (4, 46).

A U.S. study reported that HPV18 variants are more likely to be
detected (56), persist (56), and progress to CIN3� (11) in a host

whose race indicates an ancestral geographic distribution that was
once shared with that of the variant. However, such a race-risk
interaction was not apparent in Brazil (57), and we saw no clear
evidence that B/C lineages were more likely to cause cancer in
Africa or that A lineages were more likely to cause cancer in Eu-
rope. However, there was a significant overrepresentation of A1
variants in cancer in eastern Asia and the Pacific. As A1 variants
account for the large fraction of the formerly named AA lineage
(together with the rarely detected A2), this is consistent with the
U.S. study that reported the risk of developing CIN3� to be sig-
nificantly higher for AA than AFR variants (11). However, we did
not see this pattern in other regions, and A1 variants actually were
significantly underrepresented in cases from South/Central Asia.
Such regional differences could be considered consistent with the
type of race-associated risk differences described above. Alterna-
tively, these differences may be chance findings driven by small
numbers at the sublineage level and the fact that there is residual
heterogeneity between the countries grouped together by region
(see Table S3 in supplemental materials). Whatever the underly-
ing cause, such apparent regional differences reveal an inherent
complexity in studies of HPV variants and cervical cancer risk and
give a warning about the extent to which data can be pooled across
countries/regions.

Previous studies suggested that the distribution of HPV18 vari-
ants differ between ADC and SCC (4–6). However, these studies
either included small numbers of HPV18-positive cancers, for

TABLE 3 Distribution and statistical comparison of HPV18 lineages between invasive cervical cancer cases and controls

Region

No. of samples by lineage

P valuea

ORb (95% CI),
A1 vs A2-A5

Case Control

A1 A2-A5 B C Total A1 A2-A5 B C Total

Northern Africa 1 43 2 1 47 2 3 0 0 5 1.000 0.0 (0.0–1.0)
Sub-Saharan Africa 1 15 56 2 74 0 9 29 3 41 0.501 � (0.0-�)
Eastern Asia and Pacific 133 48 3 0 184 45 45 0 0 90 1.000 2.8 (1.6–4.9)
South/Central Asia 4 27 0 0 31 32 41 0 0 73 0.2 (0.0–0.6)
Europe 2 22 0 0 24 1 13 0 0 14 1.2 (0.1–75.0)
North America 4 5 0 0 9 0 0 0 0 0
South/Central America 15 58 11 0 84 2 11 0 0 13 0.351 1.4 (0.3–14.5)

Total 160 218 72 3 453 82 122 29 3 236 NAc NAc

a Comparing the distribution in the three lineages (A, B, and C) in cases and controls. Fisher’s exact test was used.
b Exact confidence intervals.
c NA, not appropriate due to strong heterogeneity in lineage distribution by region.

TABLE 4 Distribution and statistical comparison of HPV18 lineages between ADC and SCC: a matched case-case analysis

Region

No. of samples by lineage

Fisher’s exact test
P value

Adeno Squamous

A B C Subtotal A B C Subtotal

Northern Africa 4 0 0 4 7 0 1 8 1.000
Sub-Saharan Africa 2 10 0 12 5 18 0 23 1.000
Eastern Asia and Pacific 40 2 0 42 84 0 0 84 0.109
South/Central Asia 6 0 0 6 11 0 0 11
Europe 4 0 0 4 8 0 0 8
North America 2 0 0 2 4 0 0 4
South/Central America 9 2 0 11 19 3 0 22 1.000

Total 67 14 0 81 138 21 1 160 0.629
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which interpretations were based largely on extrapolations of
findings on HPV16 (4–6), or were based upon pooling of cases
from multiple continents (5). In our much larger comparison,
including 81 ADCs, each carefully matched by country and age to
two SCCs, we observed no differences in HPV18 variant distribu-
tion, either overall or in any individual region. This finding is
consistent with a U.S. study in which E/AA/AFR variants were
equally distributed among 15 ADC and 10 SCC (40) and suggests
that the overrepresentation of HPV18 in ADC (3) is not due to the
specific glandular tropism of any HPV18 genetic variant lineage.

We did not observe any changes in amino acids in E6 that are
predicted to be critical for zinc binding (cysteine residues 32 and
35, 65 and 68, 105 and 108, and 138 and 141) or the suspected
LXXLL binding motif involving Y56 and I130 (see Table S1 in
supplemental materials). There were no variants with SNPs at the
E6* splice sites involving nucleotides 229 to 233 and 416 to 420
(58), but SNPs at the neighboring nucleotide positions 226 and
227 were observed in 5 samples and 1 sample, respectively. Inter-
estingly, there were 31 samples (12 variants) in the A3/A4 sublin-
eages for which the PDZ binding motif RETQV at amino acid
residues 154 to 158 was changed to RATQV (SNP A568C). How-
ever, the change from glutamic acid (E) to alanine (A) in the
second position of the motif is not predicted to be critical (re-
viewed in reference 59). Lastly, a C104T SNP in the E6 promoter
that has been linked with significantly reduced YY1 transcription
factor binding and tumor recurrence (9) was commonly present
in A3/A4 and always in A5 variants (Table 2).

Our study was limited by the number of HPV18-positive con-
trols rather than invasive cervical cases, given that it mainly in-
cluded geographical regions with few or no cervical screening pro-
grams. Nevertheless, the reliance on 20 years of IARC studies in a
uniquely diverse set of populations from around the world meant
that the number of HPV18-positive invasive cervical cancers and
controls in the current study was by far the largest studied to date.

In conclusion, the present study provides a practical approach
for phylogenetic classification for use in epidemiological studies of
the natural history and carcinogenicity of HPV18 genetic variants
worldwide. Although some possible differences in carcinogenicity
between A sublineages were identified in different regions of Asia,
our results suggest that HPV18 variants are not useful for discrim-
inating cancer risk (at least not at the lineage level) and cannot
explain why HPV18 is more strongly linked with ADC than SCC.
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