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Universality in network dynamics
Baruch Barzel1,2 and Albert-László Barabási1,2,3*

Despite significant advances in characterizing the structural properties of complex networks, a mathematical framework that
uncovers the universal properties of the interplay between the topology and the dynamics of complex systems continues
to elude us. Here we develop a self-consistent theory of dynamical perturbations in complex systems, allowing us to
systematically separate the contribution of the network topology and dynamics. The formalism covers a broad range of
steady-state dynamical processes and offers testable predictions regarding the system’s response to perturbations and the
development of correlations. It predicts several distinct universality classes whose characteristics can be derived directly
from the continuum equation governing the system’s dynamics and which are validated on several canonical network-based
dynamical systems, from biochemical dynamics to epidemic spreading. Finally, we collect experimental data pertaining to
social and biological systems, demonstrating that we can accurately uncover their universality class even in the absence of
an appropriate continuum theory that governs the system’s dynamics.

Despite the profound diversity in the scale and purpose of
networks observed in nature and technology, their topology
shares several highly reproducible and often universal

characteristics1–8: many real networks exhibit the small-world
property9, are scale-free10, develop distinct community structure11,
and show degree correlations12,13. Yet, when it comes to the
dynamical processes that take place on these networks, diversity
wins over universality14–16. To be sure, advances in our under-
standing of synchronization17,18, spreading processes19–21 or spectral
phenomena22 have offered important clues on the interplay between
network topology and network dynamics. We continue to lack,
however, a general predictive framework that can treat a broad
range of dynamical models using a unified theoretical toolbox.
Indeed, at present, each network-based dynamical process, from
reaction dynamics in cellular metabolism to the spread of viruses
in social networks, is studied on its own terms, requiring its
dedicated analytical formalism and numerical tools. This diversity
of behaviour raises a fundamental question: are there common
patterns in the dynamics of various complex systems? Alternatively,
could the present diversity of modelling platforms and dynamical
characteristics reflect an inherent and ultimately unbridgeable gulf
between different dynamical systems?

We illustrate the depth of this problem by focusing on the
dynamics of a systemwithN components (nodes), where each node
i is characterized by an activity xi(t ), following

dxi
dt

=W (xi(t ))+
N∑
j=1

AijQ(xi(t ),xj(t )) (1)

providing a rather general deterministic description of systems
governed by pairwise interactions. The first term on the right-hand
side of equation (1) describes the self-dynamics of xi, accounting for
processes such as influx, degradation or reproduction. The second
captures the interactions of i with its neighbours, in which Aij is the
adjacency matrix and Q(xi,xj) describes the dynamical mechanism
governing the pairwise interactions. With the appropriate choice
of the nonlinear W (xi) and Q(xi,xj), equation (1) can be mapped
exactly into several dynamical models explored in the literature
(Table 1), such as epidemic processes (E), where xi represents
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the probability of infection23–25; biochemical dynamics (B), in
which xi represents the concentration of a reactant26–29; birth–
death processes30–32 (B D), in which xi represents the population
at site i; and regulatory dynamics (R), in which xi is the
expression level of a gene33,34.

The traditional probing of the dynamics of a complex system is
achieved through perturbation experiments, which explore changes
in the activity xi of node i in response to changes induced in the
activity of node j. Hence, we focus on the system’s linear response by
inducing a permanent perturbation dxj on the steady-state activity
xj and following the subsequent changes in all xi through the
correlationmatrix28 (Supplementary Section SII)

Gij =

∣∣∣∣
dxi/xi
dxj/xj

∣∣∣∣
In biology Gij represents the impact of a perturbed gene j on
a target gene i; in social systems Gij captures the influence of
an individual j on i. There is ample empirical evidence from
gene expression35–39 to metabolism40 and neuronal systems41 that
the distribution of pairwise node–node correlations, or P(Gij), is
fat-tailed, a phenomenon that lacks quantitative explanation. Our
measurements support this: we obtained Gij for the four dynamical
systems described in Table 1, in each case finding that P(G)∼G−ν

(Fig. 1a1–a4 and Supplementary Figs S5a1–a3). We find systematic
differences in ν, however: for B and B D ν = 2 and for R and
E ν = 3/2. We also find that the distribution P(G) is independent
of the nature of the underlying network (scale-free, Erdős–Rényi
or networks provided by experimental data), suggesting that ν is
determined only by the dynamical laws that govern these systems.

To obtain a more detailed understanding of a system’s response
to perturbations, we also explored several other frequently pursued
dynamical measures.

Impact and stability
We define the impact of i as

Ii =
N∑
j=1

AijGT
ij (2)
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Table 1 |Dynamical models.

Dynamics Model Rate equation W(xi) Q(xi,xj) f(x) g(x) δ ϕ β ν ω

B MAK
dxi
dt

= F−Bxi−
N∑
j=1

AijRxixj F−Bxi −Rxixj
Rx

F−Bx
x 0 0 0 2 0

B D PD
dxi
dt

= −Bxbi +

N∑
j=1

AijRxaj −Bxbi Rxaj
R

Bxb
xa 0

3
2

0 2
3
2

R MM
dxi
dt

= −Bxi+
N∑
j=1

AijR
xhj

1+xhj
−Bxi R

xhj
1+xhj

R
Bx

xh

1+xh
0 0 1

3
2

1
2

E SIS
dxi
dt

= −Bxi+
N∑
j=1

AijR(1−xi)xj −Bxi R(1−xi)xj
R(1−x)

Bx
x 1 1 1

3
2

1

Summary of four frequently explored network-based dynamical models analysed in the paper. Biochemical dynamics (B): the dynamics of protein–protein interactions is captured by mass-action
kinetics26–29 (MAK). In the model, proteins are produced at rate F, degraded at rate B and generate hetero-dimers at rate R (Supplementary Section SVII.C, where we also account for the hetero-dimer
dissociation). Birth–death processes (B D): this equation, emerging in queuing theory32, population dynamics30,31 (PD) and biology26, describes the population density at site i. The first term describes
the local population dynamics and the second term describes the coupling between adjacent sites. Here we set b = 2, representing pairwise depletion, and a = 1, describing a linear flow from the
sites neighbouring i (Supplementary Section SVII.D, where we solve for a general choice of a and b). Regulatory dynamics (R): the dynamics of gene regulation is captured by the Michaelis–Menten
(MM) equation33,34. Here, the parameter h is the Hill coefficient, which we set to h= 1 (Supplementary Section SVII.B, where we solve for general h). Epidemic dynamics (E ): the spread of infectious
diseases/ideas is captured by the susceptible–infected–susceptible (SIS) model23–25 (Supplementary Section SVII.A). For each of the four models, the table lists the associated dynamical functions W(xi)
and Q(xi,xj) in equation (1) and f(x) and g(x) as defined in equation (5), the exponents δ, ϕ and β determined from the Laurent expansions in equations (6) and (7), and the exponents ν and ω in equations
(14) and (16) respectively, derived from δ, ϕ and β .

capturing the average response of the neighbourhood of i to the
perturbation of i. Similarly, we define the stability of i as

Si =
1

N∑
j=1

AijGij

(3)

in which the denominator captures the magnitude of the response
of i to individual perturbations of the nearest neighbours of i. If i
responds strongly to neighbouring perturbations, then Si is small,
indicating that node i is unstable. Hence, Ii captures the influence of
node i on its neighbourhood, and Si captures the inverse process, the
neighbourhood’s influence on i. In Fig. 1b1–c4 and Supplementary
Fig. S5b1–c3 we show the stability and impact distributions, P(S)
and P(I ), for the four dynamical models, finding a seemingly
inconsistent behaviour: for E , P(S) and P(I ) are bounded when
P(k) is bounded (Erdős–Rényi) and fat-tailed when P(k) is fat-
tailed (scale-free); for B D, P(I ) follows a similar behaviour, but
P(S) is always bounded, regardless of P(k); for B and R, both P(S)
and P(I ) are always bounded.

Propagation
In a network environment a perturbation does not stay localized,
but can reach distant nodes. To track the spread of perturbations we
use the distance-dependent correlation function27–29

�(l)=
1
N

N∑
j=1

∑
i∈Kj (l)

Gij (4)

where Kj(l) is the group of all nodes at distance l from j.
Equation (4) describes the magnitude of the perturbations expe-
rienced by all nodes at distance l from the source. The decay rate
of �(l) determines whether perturbations penetrate the network or
remain localized in the source’s vicinity.We find that for B and B D,
�(l) shows no decay, documenting a conservative process in which
the original perturbation propagates without loss, a phenomenon
well documented in refs 27–29. For R and E we observe dissipation,
where perturbations decay exponentially as they penetrate the
network (Fig. 1d1–d4 and Supplementary Fig. S5d1–d3).

Global cascades
The cascade sizeCi represents the number of target nodes whose ac-
tivity changes beyond a threshold following a perturbation of node i.
A cascade can include all genes whose expression levels significantly

changed following a genetic perturbation or all individuals who
adopt an innovation. The distribution of cascade sizes induced
by perturbations, P(C), is frequently measured in social42–44,
technological45,46 and biological41,47 systems, finding that P(C) is
often fat-tailed, an observation whose origins remain unclear. Our
simulations (Fig. 1e1–e4 and Supplementary Fig. S5e1–e3) indicate
that P(C) depends on the interplay between the topology and
dynamics: for B D, R and E , P(C) is driven by P(k); hence, these
systems develop heterogeneous cascades with a fat-tailed P(C) on a
scale-free network but a bounded P(C) on a random network. Pro-
tein dynamics (B), however, has uniform cascades, characterized by
a bounded P(C), independent of the network topology.

Together the four functions discussed above provide a com-
prehensive description of the system’s behaviour, capturing local
dynamics (Si, Ii), propagation to distant nodes (�(l)) and the global
response of the system to perturbations (Ci). Yet, they also illustrate
the rather diverse dynamical behaviours equation (1) can gener-
ate, capturing the true diversity in the response to perturbations
observed in real systems. Although these differences are clearly
encoded somehow in the functional form of W (xi) and Q(xi,xj)
in equation (1), at present we have no way of predicting how a
system responds to perturbations from the analytical formulation
of the underlying dynamics. Hence, our goal here is to develop an
analytical formalism that bridges the structure of equation (1) and
the diverse dynamical outcomes documented in Fig. 1.We focus on
dynamics for which we can factorizeQ(xi,xj) as

Q(xi,xj)
W (xi)

= f (xi)g (xj) (5)

in which f (xi) describes the impact of the activity of i on itself
and g (xj) describes the impact of the neighbours of i on xi. (A
discussion of the expected behaviour for systems that do not obey
equation (5) is offered in Supplementary Section SVI.) We show
that the leading terms of these two functions, as expressed by the
Laurent expansions

f −1(x)=
∞∑

n=−∞

anxn (6)

and

g
(
f −1(x)

)
=

∞∑
m=−∞

bmxm (7)
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Erdős¬Rényi Scale-free
 = 3/2

100

10¬4

10¬8

10¬12

100

10¬4

10¬8

10¬12

10¬8 100

G G

P(
G

)

10¬8 100

Im
pa

ct
St

ab
ili

ty

¬4 0 4
I

¬2 0 2
I

¬2 0 2 4
I

¬2 0 2 4
II

P(
I)

P(
I)

 = 0  = 3/2  = 0  = 1

0 3 6
I I

100 101

100

10¬4

10¬8

10¬12

100

10¬4

10¬8

10¬12

0.3

0.2

0.1

0.0

0.1

0.0

¬2 0 2 4
S

¬1 0 1
S

P(
S)

0.1

0.0
¬4 0

S
¬3 0 3

S
0 1
S

0 1
S

P(
S)

0.1

0.0

P(
S) 0.1

0.0

P(
C

) 0.1

0.0

P(
C

)

0.1

0.0

0.2

0.1

0.0

P(
I) 0.1

0.0
¬4 4

I

P(
I)

0.1

0.0

0.4

0.2

0.0

0.3

0.2

0.1

0.0
0

100

10¬2

10¬4

∼I¬3∼I¬7/3

 = 0  = 3/2  = 1/2  = 1

S S
101 102

P(
S)

0.1

0.0

∼S¬3100

10¬2

10¬4

¬3 0 3

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

Γ(
l)

100

10¬3

10–6

Γ(
l)

100

10¬3

10–6

Γ(
l)

100

10¬2

10–4

0 3

l
6

l

100

10¬2

l
0 3 6 0 3 6

l
0 3 6

l
0 5 10

l l
0 5 10

l
0 2 4 6

100

10¬4

10–8

10–12

Γ(
l)

100

10¬4

10–8

10–12

100

10¬4

10–8

0 42 6

100

10¬5

10–10

10–15

¬4 ¬2 0 2

0.2

0.4

0.0
¬2 20 ¬2 2 40

P(
C

) 0.1

0.0
¬2 2 40

P(
C

) 0.1

0.0
¬2 2 40

100

10¬3

10¬6

102

100

10¬2

10¬4

102104

100

10¬2

10¬4

10¬6

102 103

∼C¬3∼C¬5∼C¬7/3

a1

b1

c1

d1

e1

a2

b2

c2

d2

e2

a3

b3

c3

d3

e3

a4

b4

c4

d4

e4

ν ν ν ν

ϕϕϕ ϕ

 = 0δ = 0δ  = 1δ = 0δ

 = 0β

ω ω ω ω

 = 0β  = 1β  = 1β

C C C C C CC C

Figure 1 | The observed dynamical behaviour of model systems. We used the response of a system to external perturbations to determine the five
functions that capture the local dynamics between neighbours, the propagation of perturbations to more distant nodes and the global cascades, using
numerical simulations. a1–a4, For all four models we find that P(G) ∼G−ν , independent of the network topology (Erdős–Rényi or scale-free). For B and B D,
ν = 2 and for R and E , ν = 3/2, in perfect agreement with the prediction of equations (13) and (14) (solid red lines). Results for the relevant empirical
networks appear in Supplementary Fig. S5. b1–c4, The impact and stability distributions, P(I) and P(S), show diverse behaviour: for B and R, both P(I) and
P(S) are bounded independently of P(k), for B D, P(I) is fat-tailed on a scale-free network but P(S) is bounded, and for E , both are fat-tailed. For scale-free
networks (P(k) ∼ k−γ ) we can predict P(S) and P(I) using P(K= ky) ∼K−Y , where Y = (γ +y− 1)/y (solid red lines, Supplementary Section SVII.E), in
agreement with simulations (note that the bounded distributions here and throughout are normalized to have mean zero and variance one). d1–d4, The
propagation of perturbations is captured by the correlation function �(l) (4): B and B D exhibit conservative propagation, as perturbations penetrate the
network without loss; R and E exhibit dissipative propagation, as perturbations decay exponentially with l. The theoretical prediction (12) (solid red lines)
is in agreement with the numerical results. For l> 〈l〉 the effect of the perturbation drops sharply, as the propagation has exhausted most nodes in the
network (grey circles), and equation (12) is no longer valid (Supplementary Section SIV where we analytically predict the behaviour of �(l) for l> 〈l〉).
e1–e4, The global impact of a perturbation is captured by the cascade size. In three of the models (B D, R, and E ) P(C) is driven by P(k), being
consequently fat-tailed or bounded; B, on the other hand, has a bounded P(C) independently of the network topology. The results are consistent
with the theoretical prediction of equations (15) and (16). The theoretical prediction for scale-free networks (solid red lines) is in agreement with the
numerical results.

where f −1(x) is the inverse function of f (x), uniquely determine
the dynamics of the system (1) around its steady state and allow
us to analytically predict each of the dynamical characteristics
documented in Fig. 1. As only a small number of leading terms
controls the expansions (6) and (7), we predict the existence of
several broad universality classes that govern network dynamics.
Finally, by demonstrating the validity of our results for two experi-
mentally collected data sets, we offer evidence of a deep universality
in network dynamics that crosses particular domains of inquiry.

Local dynamics
We start by inducing a small perturbation, dxj , around the steady-
state solution of equation (1), allowing us to write the response of i,
the nearest neighbour of j, as (Supplementary Section SIII.A,B)

Gij ∼
xj f (xi)
kixi

(
dg
dxj

)(
df
dxi

)−1

where xi ∼ f −1(1/ki) (xj ∼ f −1(1/kj)) is the steady-state ac-
tivity of i (j). For large ki (kj), Gij will be dominated by
the leading terms of equations (6) and (7). Denoting the
leading terms of equations (6) and (7) by n0 and m0 re-
spectively, and the leading non-vanishing terms by n1 and
m1, we show that Si in equation (3) and Ii in equation (2)
depend on the degree of node i as (Supplementary Sec-
tion SIII.C,D)

Si ∼ kδ
i (8)

Ii ∼ kϕ

i (9)

where δ = n1 −n0 and ϕ = δ −m1 +1. The value of δ allows us to
identify two dynamical universality classes:

Uniform stability occurs when δ = 0 (Fig. 2a). If in equation (6)
n1 = n0, we have δ = 0 in equation (8), and the stability of
a node is independent of its degree, implying that hubs and
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Figure 1 | The observed dynamical behaviour of model systems. We used the response of a system to external perturbations to determine the five
functions that capture the local dynamics between neighbours, the propagation of perturbations to more distant nodes and the global cascades, using
numerical simulations. a1–a4, For all four models we find that P(G) ∼G−ν , independent of the network topology (Erdős–Rényi or scale-free). For B and B D,
ν = 2 and for R and E , ν = 3/2, in perfect agreement with the prediction of equations (13) and (14) (solid red lines). Results for the relevant empirical
networks appear in Supplementary Fig. S5. b1–c4, The impact and stability distributions, P(I) and P(S), show diverse behaviour: for B and R, both P(I) and
P(S) are bounded independently of P(k), for B D, P(I) is fat-tailed on a scale-free network but P(S) is bounded, and for E , both are fat-tailed. For scale-free
networks (P(k) ∼ k−γ ) we can predict P(S) and P(I) using P(K= ky) ∼K−Y , where Y = (γ +y− 1)/y (solid red lines, Supplementary Section SVII.E), in
agreement with simulations. d1–d4, The propagation of perturbations is captured by the correlation function �(l) (4): B and B D exhibit conservative
propagation, as perturbations penetrate the network without loss; R and E exhibit dissipative propagation, as perturbations decay exponentially with l.
The theoretical prediction (12) (solid red lines) is in agreement with the numerical results. For l> 〈l〉 the effect of the perturbation drops sharply, as the
propagation has exhausted most nodes in the network (grey circles), and equation (12) is no longer valid (Supplementary Section SIV where we
analytically predict the behaviour of �(l) for l> 〈l〉). e1–e4, The global impact of a perturbation is captured by the cascade size. In three of the models (B D,
R, and E ) P(C) is driven by P(k), being consequently fat-tailed or bounded; B, on the other hand, has a bounded P(C) independently of the network
topology. The results are consistent with the theoretical prediction of equations (15) and (16). The theoretical prediction for scale-free networks (solid red
lines) is in agreement with the numerical results.

where f −1(x) is the inverse function of f (x), uniquely determine
the dynamics of the system (1) around its steady state and allow
us to analytically predict each of the dynamical characteristics
documented in Fig. 1. As only a small number of leading terms
controls the expansions (6) and (7), we predict the existence of
several broad universality classes that govern network dynamics.
Finally, by demonstrating the validity of our results for two experi-
mentally collected data sets, we offer evidence of a deep universality
in network dynamics that crosses particular domains of inquiry.

Local dynamics
We start by inducing a small perturbation, dxj , around the steady-
state solution of equation (1), allowing us to write the response of i,
the nearest neighbour of j, as (Supplementary Section SIII.A,B)

Gij ∼
xj f (xi)
kixi

(
dg
dxj

)(
df
dxi

)−1

where xi ∼ f −1(1/ki) (xj ∼ f −1(1/kj)) is the steady-state ac-
tivity of i (j). For large ki (kj), Gij will be dominated by
the leading terms of equations (6) and (7). Denoting the
leading terms of equations (6) and (7) by n0 and m0 re-
spectively, and the leading non-vanishing terms by n1 and
m1, we show that Si in equation (3) and Ii in equation (2)
depend on the degree of node i as (Supplementary Sec-
tion SIII.C,D)

Si ∼ kδ
i (8)

Ii ∼ kϕ

i (9)

where δ = n1 −n0 and ϕ = δ −m1 +1. The value of δ allows us to
identify two dynamical universality classes:

Uniform stability occurs when δ = 0 (Fig. 2a). If in equation (6)
n1 = n0, we have δ = 0 in equation (8), and the stability of
a node is independent of its degree, implying that hubs and
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universality classes. a, Uniform stability: if δ = 0 in equation (8), the stability is independent of the node’s degree and P(S) is bounded, regardless of the
form of P(k). a1–a3, As predicted, B (a1), R (a2) and B D (a3) belong to this class, featuring Si ∼ k0

i . Hence, regardless of whether the underlying network
is random (ER), scale-free (SF) or an empirical network (yeast protein–protein interaction (PPI) network52; yeast transcriptional regulatory network53

(TRN); Supplementary Section SVII) P(S) will be bounded (Fig. 1c1–c3). b, Heterogeneous stability: if δ > 0 in equation (8), Si depends on ki and P(S) is
driven by P(k), being fat-tailed if P(k) is fat-tailed. For E (b1) we predict δ = 1 (solid green line), in agreement with results obtained for both model and
empirical networks (Email48), indicating that P(S) ∼ P(k) (Fig. 1c4). Where appropriate, here and in what follows, we used logarithmic binning to show the
scaling of Si (ref. 54). Impact, Ii, characterizes the influence of i on its immediate neighbours. c, Uniform impact, observed for ϕ = 0 in equation (9), leads
to a bounded P(I). B (c1) and R (c2) belong to this class (Ii ∼ k0

i ), a prediction supported by their bounded P(I) (Fig. 1b1,b3). d, Heterogeneous impact,
observed when ϕ �= 0 in equation (9), for which P(I) is driven by P(k). For B D (d1) we predict ϕ = 3/2 and for E (d2) ϕ = 1, in perfect agreement with the
numerical results. As Ii depends on ki in this class P(I) is driven by P(k) (Fig. 1b2,b4).

less connected nodes respond similarly to perturbations in their
immediate vicinity.

Heterogeneous stability occurs when δ > 0 (Fig. 2b). This
represents the only other possibility, that n0 = 0 and n1 > 0 in
equation (6), predicting δ = n1. As δ > 0, according to equation (8)
hubs are more stable to local perturbations than small nodes. In

other words, the higher the degree of a node, the less responsive it
is to changes in its immediate neighbourhood.

These dynamical universality classes determine the shape of
P(S). For uniform stability (δ = 0), Si is independent of ki; hence,
P(S) is independent of the degree distribution, P(k). Thus P(S) is
bounded, independently of whether P(k) is scale-free or Poisson;
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numerical results. As Ii depends on ki in this class P(I) is driven by P(k) (Fig. 1b2,b4).

less connected nodes respond similarly to perturbations in their
immediate vicinity.

Heterogeneous stability occurs when δ > 0 (Fig. 2b). This
represents the only other possibility, that n0 = 0 and n1 > 0 in
equation (6), predicting δ = n1. As δ > 0, according to equation (8)
hubs are more stable to local perturbations than small nodes. In

other words, the higher the degree of a node, the less responsive it
is to changes in its immediate neighbourhood.

These dynamical universality classes determine the shape of
P(S). For uniform stability (δ = 0), Si is independent of ki; hence,
P(S) is independent of the degree distribution, P(k). Thus P(S) is
bounded, independently of whether P(k) is scale-free or Poisson;
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hence, all nodes have comparable dynamical stability (Fig. 2a). In
contrast, for heterogeneous stability (δ > 0), Si increases with ki;
hence, if P(k) is fat-tailed, then P(S) will also be fat-tailed (Fig. 2b).
Table 1 lists δ derived for the four dynamical models, predicting
δ = 0 for B, B D and R (Fig. 2a1–a3), and δ = 1 for E (Fig. 2b1).
These predictions are in excellent agreement with the observed
P(S), depending on P(k) for δ > 0 and being independent of P(k)
for δ = 0 (Fig. 1c1–c4).

The value of ϕ in equation (9) predicts two additional
dynamical universality classes.

Uniform impact occurswhenϕ=0 in equation (9) (Fig. 2c). The
local impact (2) is degree independent; hence, a node’s perturbation
has roughly the same impact on its neighbours, regardless of
whether the perturbed node is a hub or a peripheral node. In this
case, P(I ) is bounded, regardless of the degree distribution P(k).
Table 1 indicates that B and R belong to this universality class;
hence, for these models, Ii ∼ k0i (Fig. 2c1–c2) and P(I ) is bounded
as predicted (Fig. 1b1,b3).

Heterogeneous impact occurs whenϕ �=0. In this case the impact
of a node is affected by its degree, hubs having a stronger (weaker)
impact on the networkwhen ϕ >0 (ϕ <0). Therefore, P(I ) depends
on P(k), being fat-tailed if P(k) is fat-tailed and bounded if P(k)
is bounded. This universality class includes B D (ϕ = 3/2) and E
(ϕ =1), as confirmed by Figs 2d1–d2 and 1b2,b4.

For scale-free networks, we also predict the specific form of
P(I ) and P(S) (Supplementary Section SVII.E), showing a perfect
agreementwith the simulations (Fig. 1b2,b4,c4, red solid lines).

Taken together, we predict that the exponents δ and ϕ

in equation (9) and hence the behaviour of P(S) and P(I ),
characterizing the system’s local response to perturbations, are
determined only by the functional form of f (x) and g (x).
Consequently, δ andϕ are independent of the system’s topology and
of the microscopic details of the dynamical equation (1). Together
they determine four dynamical universality classes that can fully
account for the diverse dynamical behaviour observed though P(S)
and P(I ) in Fig. 1b1–c4.

Propagation
We now turn to the propagation of perturbations, deriving �(l)
in equation (4) for large networks (N → ∞) with an arbitrary

degree-distribution P(k). In such networks, the number of nodes
at distance l from a node follows5

|K (l)| ∼ eαl (10)

where

eα
=

〈k2〉−〈k〉
〈k〉

(11)

is the average nearest-neighbour degree. For networks satis-
fying equation (10), for l < 〈l〉 we show that (Supplemen-
tary Section SIV)

�(l)= e−βαl (12)

where β =m1 −m0 up to a logarithmic correction, which depends
on microscopic details of equation (1), for example, rate constants
(Supplementary Section SIV.E). While α is determined by the
network topology, the dissipation rate β is determined solely by
the dynamics through the expansion (7), resulting in two distinct
dynamical behaviours.

Conservative dynamics is observed when β = 0 (Fig. 3b). If
the leading term in equation (7) is m0 �= 0 we have m1 = m0,
predicting β = 0, and �(l) = 1. Hence, the total magnitude
of a local perturbation is sustained as it propagates through
the network, describing a conservative process. In this case,
the individual correlations Gij will decay with l , but this decay
is driven entirely by the topological expansion of the network
in equation (10), distributing the original perturbation over
an exponentially increasing number of nodes. Taking g (x)
and f (x) from Table 1, we predict that B and B D belong
to this universality class, as confirmed by the non-decaying
�(l) in Fig. 1d1,d2.

Dissipative dynamics is observed when β > 0 (Fig. 3c). If the
leading term in equation (7) is m0 = 0, we have β = m1 > 0.
This implies an exponential decay of �(l), describing a dissipative
process. Now the decay of Gij has two origins: the dissipation of
the perturbation and its distribution over an exponentially growing
number of nodes. Such dissipative propagation is predicted for R
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hence, all nodes have comparable dynamical stability (Fig. 2a). In
contrast, for heterogeneous stability (δ > 0), Si increases with ki;
hence, if P(k) is fat-tailed, then P(S) will also be fat-tailed (Fig. 2b).
Table 1 lists δ derived for the four dynamical models, predicting
δ = 0 for B, B D and R (Fig. 2a1–a3), and δ = 1 for E (Fig. 2b1).
These predictions are in excellent agreement with the observed
P(S), depending on P(k) for δ > 0 and being independent of P(k)
for δ = 0 (Fig. 1c1–c4).

The value of ϕ in equation (9) predicts two additional
dynamical universality classes.

Uniform impact occurswhenϕ=0 in equation (9) (Fig. 2c). The
local impact (2) is degree independent; hence, a node’s perturbation
has roughly the same impact on its neighbours, regardless of
whether the perturbed node is a hub or a peripheral node. In this
case, P(I ) is bounded, regardless of the degree distribution P(k).
Table 1 indicates that B and R belong to this universality class;
hence, for these models, Ii ∼ k0i (Fig. 2c1–c2) and P(I ) is bounded
as predicted (Fig. 1b1,b3).

Heterogeneous impact occurs whenϕ �=0. In this case the impact
of a node is affected by its degree, hubs having a stronger (weaker)
impact on the networkwhen ϕ >0 (ϕ <0). Therefore, P(I ) depends
on P(k), being fat-tailed if P(k) is fat-tailed and bounded if P(k)
is bounded. This universality class includes B D (ϕ = 3/2) and E
(ϕ =1), as confirmed by Figs 2d1–d2 and 1b2,b4.

For scale-free networks, we also predict the specific form of
P(I ) and P(S) (Supplementary Section SVII.E), showing a perfect
agreementwith the simulations (Fig. 1b2,b4,c4, red solid lines).

Taken together, we predict that the exponents δ and ϕ

in equation (9) and hence the behaviour of P(S) and P(I ),
characterizing the system’s local response to perturbations, are
determined only by the functional form of f (x) and g (x).
Consequently, δ andϕ are independent of the system’s topology and
of the microscopic details of the dynamical equation (1). Together
they determine four dynamical universality classes that can fully
account for the diverse dynamical behaviour observed though P(S)
and P(I ) in Fig. 1b1–c4.

Propagation
We now turn to the propagation of perturbations, deriving �(l)
in equation (4) for large networks (N → ∞) with an arbitrary

degree-distribution P(k). In such networks, the number of nodes
at distance l from a node follows5

|K (l)| ∼ eαl (10)

where

eα
=

〈k2〉−〈k〉
〈k〉

(11)

is the average nearest-neighbour degree. For networks satis-
fying equation (10), for l < 〈l〉 we show that (Supplemen-
tary Section SIV)

�(l)= e−βαl (12)

where β =m1 −m0 up to a logarithmic correction, which depends
on microscopic details of equation (1), for example, rate constants
(Supplementary Section SIV.E). While α is determined by the
network topology, the dissipation rate β is determined solely by
the dynamics through the expansion (7), resulting in two distinct
dynamical behaviours.

Conservative dynamics is observed when β = 0 (Fig. 3b). If
the leading term in equation (7) is m0 �= 0 we have m1 = m0,
predicting β = 0, and �(l) = 1. Hence, the total magnitude
of a local perturbation is sustained as it propagates through
the network, describing a conservative process. In this case,
the individual correlations Gij will decay with l , but this decay
is driven entirely by the topological expansion of the network
in equation (10), distributing the original perturbation over
an exponentially increasing number of nodes. Taking g (x)
and f (x) from Table 1, we predict that B and B D belong
to this universality class, as confirmed by the non-decaying
�(l) in Fig. 1d1,d2.

Dissipative dynamics is observed when β > 0 (Fig. 3c). If the
leading term in equation (7) is m0 = 0, we have β = m1 > 0.
This implies an exponential decay of �(l), describing a dissipative
process. Now the decay of Gij has two origins: the dissipation of
the perturbation and its distribution over an exponentially growing
number of nodes. Such dissipative propagation is predicted for R
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Figure 4 | Cascade sizes. a, The cascade size is jointly driven by two mechanisms: the local impact of a node on its nearest neighbours (Ii) and the
propagation from the neighbours to the rest of the network (�(l)). Hence, Ci ∼ kω

i , where ω is determined by both ϕ and β defined in equation (16). b, Four
classes of dynamical behaviour emerge: (b1) for R we have β = 1 and ϕ = 0, predicting ω = 1/2, and hence heterogeneous cascades with P(C) driven by
P(k), as confirmed by Fig. 1e3. Here the local dynamics is uniform (Fig. 1b3), and yet, remarkably, the global cascades can be heterogeneous owing to the
dissipative propagation (β > 0). b2, For E we have β = ϕ = 1, predicting ω = 1, a heterogeneous cascade dynamics, as shown in Fig. 1e4. b3, For B we have
β = ϕ = 0, and hence ω = 0, predicting uniform cascades. Here even if P(k) is fat-tailed, P(C) will be bounded, so that the dynamical behaviour is largely
independent of the topological heterogeneity (Fig. 1e1). b4, For B D we have β = 0 and ϕ = 3/2, predicting ω = 3/2, a heterogeneous cascade dynamics, as
shown in Fig. 1e2. The heterogeneity in this case, in which β = 0, is driven by the local dynamics and hence P(C) ∼ P(I) (Fig. 1b2).

and E , both with β =m1 = 1 (Table 1), in perfect agreement with
the results of Fig. 1d3–d4 (solid lines).

These two universality classes also determine the distribution of
pairwise correlations, P(G) (Fig. 1a1–a4). Using the fact that the
average individual correlation at l is G(l)=�(l)/K (l), we can write
P(G) dG= P[l(G)](dl/dG) dG, where P(l)∼ eαl is the probability
that a randomly selected node pair is at distance l . According to
equations (12) and (10), l(G) ∼ − lnG/(β + 1)α, so P(G) follows
(Supplementary Section SIV.D)

P(G)∼G−ν (13)
where

ν =
β +2
β +1

(14)

For conservative dynamics (β =0) we have ν =2, and for dissipative
dynamics (β > 0) we have 1 < ν < 2, where the smaller ν is, the

stronger the dissipation is. Equation (14) predicts ν = 2 for B
and B D (β = 0), and ν = 3/2 for R and E (β = 1), in perfect
agreement with Fig. 1a1–a4.

Equations (12)–(14) uncover the dependence of the correlation
function on the network topology (α) and the dynamics (β), and
their impact on the distribution of the pairwise correlations (ν).
Like δ and ϕ, the value of β and ν is universal, being independent
of the topology and the microscopic details of equation (1). Note
that we can measure P(G) without knowing the network topology;
hence, we can use equation (14) to obtain β and �(l) (12) even if
we lack a map of the system, a result of strong empirical importance
as for many systems of interest we lack an accurate network map
(Supplementary Section SIX.A).

Global dynamics
Our analysis up to this point revealed two independent univer-
salities: the first captures a node’s local response to changes in
its immediate neighbourhood (Si, Ii), and the second captures
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Figure 4 | Cascade sizes. a, The cascade size is jointly driven by two mechanisms: the local impact of a node on its nearest neighbours (Ii) and the
propagation from the neighbours to the rest of the network (�(l)). Hence, Ci ∼ kω

i , where ω is determined by both ϕ and β defined in equation (16). b, Four
classes of dynamical behaviour emerge: (b1) for R we have β = 1 and ϕ = 0, predicting ω = 1/2, and hence heterogeneous cascades with P(C) driven by
P(k), as confirmed by Fig. 1e3. Here the local dynamics is uniform (Fig. 1b3), and yet, remarkably, the global cascades can be heterogeneous owing to the
dissipative propagation (β > 0). b2, For E we have β = ϕ = 1, predicting ω = 1, a heterogeneous cascade dynamics, as shown in Fig. 1e4. b3, For B we have
β = ϕ = 0, and hence ω = 0, predicting uniform cascades. Here even if P(k) is fat-tailed, P(C) will be bounded, so that the dynamical behaviour is largely
independent of the topological heterogeneity (Fig. 1e1). b4, For B D we have β = 0 and ϕ = 3/2, predicting ω = 3/2, a heterogeneous cascade dynamics, as
shown in Fig. 1e2. The heterogeneity in this case, in which β = 0, is driven by the local dynamics and hence P(C) ∼ P(I) (Fig. 1b2).

and E , both with β =m1 = 1 (Table 1), in perfect agreement with
the results of Fig. 1d3–d4 (solid lines).

These two universality classes also determine the distribution of
pairwise correlations, P(G) (Fig. 1a1–a4). Using the fact that the
average individual correlation at l is G(l)=�(l)/K (l), we can write
P(G) dG= P[l(G)](dl/dG) dG, where P(l)∼ eαl is the probability
that a randomly selected node pair is at distance l . According to
equations (12) and (10), l(G) ∼ − lnG/(β + 1)α, so P(G) follows
(Supplementary Section SIV.D)

P(G)∼G−ν (13)
where

ν =
β +2
β +1

(14)

For conservative dynamics (β =0) we have ν =2, and for dissipative
dynamics (β > 0) we have 1 < ν < 2, where the smaller ν is, the

stronger the dissipation is. Equation (14) predicts ν = 2 for B
and B D (β = 0), and ν = 3/2 for R and E (β = 1), in perfect
agreement with Fig. 1a1–a4.

Equations (12)–(14) uncover the dependence of the correlation
function on the network topology (α) and the dynamics (β), and
their impact on the distribution of the pairwise correlations (ν).
Like δ and ϕ, the value of β and ν is universal, being independent
of the topology and the microscopic details of equation (1). Note
that we can measure P(G) without knowing the network topology;
hence, we can use equation (14) to obtain β and �(l) (12) even if
we lack a map of the system, a result of strong empirical importance
as for many systems of interest we lack an accurate network map
(Supplementary Section SIX.A).

Global dynamics
Our analysis up to this point revealed two independent univer-
salities: the first captures a node’s local response to changes in
its immediate neighbourhood (Si, Ii), and the second captures
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the propagation to distant nodes (�(l), P(G)). The full impact
of a perturbation, as captured by the cascade size Ci (refs 41–
47), is a combination of these two. Indeed, we can show that
(Supplementary Section SV)

Ci ∼ kω
i (15)

where

ω =
β +ϕ

β +1
(16)

which, like all the previously predicted exponents, is intrinsic to
the system’s dynamics. The dependence of Ci on the local impact
(ϕ) and the propagation (β) gives rise to four classes of behaviour
(Fig. 4b1–b4). For example, for B, a conservative system (β = 0)
with uniform local impact (ϕ = 0), equation (16) predicts ω = 0,
indicating that Ci is independent of ki, and hence P(C) is bounded
independently of the nature of P(k) (Figs 1e1 and 4b3). For B D we
have a conservative system (β =0) with heterogeneous local impact
(ϕ = 3/2), predicting ω = ϕ = 3/2 (Fig. 4b4). As Ci scales with ki,
we predict heterogeneous cascades in which P(C) is determined
by P(k), being fat-tailed if P(k) is fat-tailed (Fig. 1e2). The cascade
heterogeneity is driven by the local dynamics through the hetero-
geneous local impact; hence, ω = ϕ and P(C) ∼ P(I ). Regulatory
dynamics (R) is characterized by uniform local impact (ϕ = 0),
and dissipative dynamics (β = 1), having ω = 1/2, predicting
heterogeneous cascades (Figs 1e3 and 4b1). As opposed to B D, the
cascade heterogeneity is a consequence of the propagation dynamics
(β), rather than the local impact. This explains the surprising
disparity between the local and the global behaviour observed for
R: on the other hand P(I ) is bounded (Fig. 1b3), namely all nodes
have comparable impact on their immediate neighbours, yet still
P(C) could be fat-tailed (Fig. 1e3). Finally, the heterogeneous local
impact (ϕ = 1) of E , coupled with the dissipative dynamics (β = 1)
leads to heterogeneous cascades with ω=1 (16) (Figs 1e4 and 4b2).
For scale-free networks we can also predict the specific form of
P(C) (Supplementary Section SVII.E), in perfect agreement with
the simulations (Fig. 1e2–e4, red solid lines).

Dynamical universality from experimental data
In many systems of practical importance the analytical form of
the dynamics is unknown; hence, we cannot predict the system’s
behaviour from equation (1). Yet, the link we established between
the universal exponents δ, ϕ, β and ω, and the macroscopically
accessible P(S), P(I ), P(G) and P(C) distributions allows us to
determine a system’s universality class even without knowing the
analytical formulation of its dynamics. To demonstrate this we
collected experimental data pertaining to social and biological
systems, allowing us to show how to determine their dynamical
universality class.

Human dynamics. We used the temporal activity pattern of a user
during email communication as a proxy for human dynamics,
where xi(t ) represents the number of emails sent by user i during
a six-hour interval48. We calculated Gij = 〈xixj〉/〈x2

i 〉 for each
user pair (Supplementary Section SVIII.A). In Fig. 5a1,b1 we
show the stability and impact versus ki, finding that for large ki,
Si ∼ kδ

i and Ii ∼ kϕ

i , as predicted in equations (8) and (9), with
δ = 2.4±0.2 and ϕ = 2.1±0.1. As δ > 0 and ϕ > 0 this represents
heterogeneous stability and impact, for which we expect P(S)
and P(I ) to be fat-tailed (Fig. 5a2,b2). We also measured P(G),
finding ν = 2.0± 0.1 (Fig. 5c2), predicting that the dynamics is
conservative (β =0), independently confirmed by the non-decaying
�(l) (Fig. 5c1). The empirically obtained values for ϕ and β allow
us to predict thatω=2.1 (equation (16)), leading to heterogeneous

cascades. The cascade heterogeneity is driven by the local dynamics
(ϕ >0, β =0), and hence we expect that P(C)∼P(I ), confirmed by
the empirical results. We also predict the precise form of P(S), P(I )
and P(C) (solid lines) from the empirically measured scale-free
P(k) (γ = 2.0), finding an excellent agreement with the empirical
results (Supplementary Section SVII.E).

Cellular dynamics. We used high-throughput microarray data
collected for Saccharomyces cerevisiae, to measure the impact of
55 genetically perturbed genes on the remaining 6,222 genes49. In
this system, not only is the dynamics unknown, but we also lack
an accurate map of the underlying physical interactions. Still, we
can directly measure the distributions P(S), P(I ), P(G) and P(C)
(Supplementary Section SVIII.B).We find that P(S) is bounded and
P(I ) is fat-tailed, suggesting that expression patterns are described
by uniform stability and heterogeneous local impact (Fig. 5e,f). The
correlation distribution follows equation (13) with ν = 2.0± 0.1
(Fig. 5g), predicting a conservative dynamics with β = 0. The
heterogeneous local impact (ϕ > 0) together with the conservative
dynamics (β = 0) predict ω > 0 in equation (16); hence, P(C)
describes heterogeneous cascades, as observed in Fig. 5h. As β = 0
the cascade heterogeneity is governed by the local impact (ω = ϕ),
as supported by the fact that P(C) ∼ P(I ). Taken together the
two systems indicate that we can obtain the relevant dynamical
class from the direct measurement of the system’s dynamical
response to perturbations.

Summary and outlook
Predicting the behaviour of a complex system requires a joint
quantitative description of the system’s structure and dynamics.
Much of the advances obtained so far were system dependent,
suggesting that each dynamical system requires its unique suite of
analytical and numerical tools to understand its behaviour14–16,27,28.
Here we developed a self-consistent formalism that defies this
wisdom. We bridge topology and dynamics, predicting that
a complex system’s response to perturbations is driven by
a small number of universal characteristics. This universality
defines a minimal set of relevant exponents, δ, ϕ, ν, β and
ω, which can all be uniquely derived from the dynamical rules
that govern the system. Our demonstration of the existence of
distinct dynamical universality classes offers new avenues for
future empirical and theoretical work. On the empirical side,
the small number of possible dynamical behaviours suggests
that the direct measurement of P(G), P(S), P(I ), P(C) and
�(l) could provide crucial insights into the system’s dynamics,
potentially allowing us to infer the leading terms of the dynamical
functions f (xi) and g (xj) in equation (5) from empirical data.
This would allow us to develop an effective continuum theory for
systems whose dynamics remains unknown, drawing a connection
between the empirically accessible quantities and the system’s
mechanistic description.

The fact that our formalism also works for the two experimental
systems indicates that the conclusions we derived from equation (1)
are rather general, applying to systems of yet unknown dynamics
as well. This is not unexpected: our main finding is that no
matter what the detailed structure of W (xi) and Q(xi,xj) is,
the number of distinct dynamical patterns equation (1) can
exhibit is finite, governed by the leading terms of the Laurent
expansions of equations (6) and (7). Hence, any dynamical
system that follows (1), independent of the precise form of
W (xi) and Q(xi, xj), should be classifiable into one of the
predicted universality classes.

That being said, further work is needed to generalize our
approach to non-stationary phenomena and to dynamical processes
that cannot be cast in the form of equation (1). Such a program
could either place non-stationary systems within the framework
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the propagation to distant nodes (�(l), P(G)). The full impact
of a perturbation, as captured by the cascade size Ci (refs 41–
47), is a combination of these two. Indeed, we can show that
(Supplementary Section SV)

Ci ∼ kω
i (15)

where

ω =
β +ϕ

β +1
(16)

which, like all the previously predicted exponents, is intrinsic to
the system’s dynamics. The dependence of Ci on the local impact
(ϕ) and the propagation (β) gives rise to four classes of behaviour
(Fig. 4b1–b4). For example, for B, a conservative system (β = 0)
with uniform local impact (ϕ = 0), equation (16) predicts ω = 0,
indicating that Ci is independent of ki, and hence P(C) is bounded
independently of the nature of P(k) (Figs 1e1 and 4b3). For B D we
have a conservative system (β =0) with heterogeneous local impact
(ϕ = 3/2), predicting ω = ϕ = 3/2 (Fig. 4b4). As Ci scales with ki,
we predict heterogeneous cascades in which P(C) is determined
by P(k), being fat-tailed if P(k) is fat-tailed (Fig. 1e2). The cascade
heterogeneity is driven by the local dynamics through the hetero-
geneous local impact; hence, ω = ϕ and P(C) ∼ P(I ). Regulatory
dynamics (R) is characterized by uniform local impact (ϕ = 0),
and dissipative dynamics (β = 1), having ω = 1/2, predicting
heterogeneous cascades (Figs 1e3 and 4b1). As opposed to B D, the
cascade heterogeneity is a consequence of the propagation dynamics
(β), rather than the local impact. This explains the surprising
disparity between the local and the global behaviour observed for
R: on the other hand P(I ) is bounded (Fig. 1b3), namely all nodes
have comparable impact on their immediate neighbours, yet still
P(C) could be fat-tailed (Fig. 1e3). Finally, the heterogeneous local
impact (ϕ = 1) of E , coupled with the dissipative dynamics (β = 1)
leads to heterogeneous cascades with ω=1 (16) (Figs 1e4 and 4b2).
For scale-free networks we can also predict the specific form of
P(C) (Supplementary Section SVII.E), in perfect agreement with
the simulations (Fig. 1e2–e4, red solid lines).

Dynamical universality from experimental data
In many systems of practical importance the analytical form of
the dynamics is unknown; hence, we cannot predict the system’s
behaviour from equation (1). Yet, the link we established between
the universal exponents δ, ϕ, β and ω, and the macroscopically
accessible P(S), P(I ), P(G) and P(C) distributions allows us to
determine a system’s universality class even without knowing the
analytical formulation of its dynamics. To demonstrate this we
collected experimental data pertaining to social and biological
systems, allowing us to show how to determine their dynamical
universality class.

Human dynamics. We used the temporal activity pattern of a user
during email communication as a proxy for human dynamics,
where xi(t ) represents the number of emails sent by user i during
a six-hour interval48. We calculated Gij = 〈xixj〉/〈x2

i 〉 for each
user pair (Supplementary Section SVIII.A). In Fig. 5a1,b1 we
show the stability and impact versus ki, finding that for large ki,
Si ∼ kδ

i and Ii ∼ kϕ

i , as predicted in equations (8) and (9), with
δ = 2.4±0.2 and ϕ = 2.1±0.1. As δ > 0 and ϕ > 0 this represents
heterogeneous stability and impact, for which we expect P(S)
and P(I ) to be fat-tailed (Fig. 5a2,b2). We also measured P(G),
finding ν = 2.0± 0.1 (Fig. 5c2), predicting that the dynamics is
conservative (β =0), independently confirmed by the non-decaying
�(l) (Fig. 5c1). The empirically obtained values for ϕ and β allow
us to predict thatω=2.1 (equation (16)), leading to heterogeneous

cascades. The cascade heterogeneity is driven by the local dynamics
(ϕ >0, β =0), and hence we expect that P(C)∼P(I ), confirmed by
the empirical results. We also predict the precise form of P(S), P(I )
and P(C) (solid lines) from the empirically measured scale-free
P(k) (γ = 2.0), finding an excellent agreement with the empirical
results (Supplementary Section SVII.E).

Cellular dynamics. We used high-throughput microarray data
collected for Saccharomyces cerevisiae, to measure the impact of
55 genetically perturbed genes on the remaining 6,222 genes49. In
this system, not only is the dynamics unknown, but we also lack
an accurate map of the underlying physical interactions. Still, we
can directly measure the distributions P(S), P(I ), P(G) and P(C)
(Supplementary Section SVIII.B).We find that P(S) is bounded and
P(I ) is fat-tailed, suggesting that expression patterns are described
by uniform stability and heterogeneous local impact (Fig. 5e,f). The
correlation distribution follows equation (13) with ν = 2.0± 0.1
(Fig. 5g), predicting a conservative dynamics with β = 0. The
heterogeneous local impact (ϕ > 0) together with the conservative
dynamics (β = 0) predict ω > 0 in equation (16); hence, P(C)
describes heterogeneous cascades, as observed in Fig. 5h. As β = 0
the cascade heterogeneity is governed by the local impact (ω = ϕ),
as supported by the fact that P(C) ∼ P(I ). Taken together the
two systems indicate that we can obtain the relevant dynamical
class from the direct measurement of the system’s dynamical
response to perturbations.

Summary and outlook
Predicting the behaviour of a complex system requires a joint
quantitative description of the system’s structure and dynamics.
Much of the advances obtained so far were system dependent,
suggesting that each dynamical system requires its unique suite of
analytical and numerical tools to understand its behaviour14–16,27,28.
Here we developed a self-consistent formalism that defies this
wisdom. We bridge topology and dynamics, predicting that
a complex system’s response to perturbations is driven by
a small number of universal characteristics. This universality
defines a minimal set of relevant exponents, δ, ϕ, ν, β and
ω, which can all be uniquely derived from the dynamical rules
that govern the system. Our demonstration of the existence of
distinct dynamical universality classes offers new avenues for
future empirical and theoretical work. On the empirical side,
the small number of possible dynamical behaviours suggests
that the direct measurement of P(G), P(S), P(I ), P(C) and
�(l) could provide crucial insights into the system’s dynamics,
potentially allowing us to infer the leading terms of the dynamical
functions f (xi) and g (xj) in equation (5) from empirical data.
This would allow us to develop an effective continuum theory for
systems whose dynamics remains unknown, drawing a connection
between the empirically accessible quantities and the system’s
mechanistic description.

The fact that our formalism also works for the two experimental
systems indicates that the conclusions we derived from equation (1)
are rather general, applying to systems of yet unknown dynamics
as well. This is not unexpected: our main finding is that no
matter what the detailed structure of W (xi) and Q(xi,xj) is,
the number of distinct dynamical patterns equation (1) can
exhibit is finite, governed by the leading terms of the Laurent
expansions of equations (6) and (7). Hence, any dynamical
system that follows (1), independent of the precise form of
W (xi) and Q(xi, xj), should be classifiable into one of the
predicted universality classes.

That being said, further work is needed to generalize our
approach to non-stationary phenomena and to dynamical processes
that cannot be cast in the form of equation (1). Such a program
could either place non-stationary systems within the framework
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developed above or could unlock an even richer set of dynamical
characteristics. For example, threshold models used in social
networks50 and Boolean network models51, whose node activities
are discrete, are not obviously accounted for by equation (1). Aided

by the increasing availability of empirical data, this approach could
bring us closer to the construction of a powerful dynamical theory
of complex systems, impacting numerous disciplines, from cell
biology to human dynamics.
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developed above or could unlock an even richer set of dynamical
characteristics. For example, threshold models used in social
networks50 and Boolean network models51, whose node activities
are discrete, are not obviously accounted for by equation (1). Aided

by the increasing availability of empirical data, this approach could
bring us closer to the construction of a powerful dynamical theory
of complex systems, impacting numerous disciplines, from cell
biology to human dynamics.
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In the version of this Article originally published, the expression for Gij on page 673 should have included an absolute value sign. In 
addition, the caption for Fig. 1b1–c4 was missing the final wording: (note that the bounded distributions here and throughout are 
normalized to have mean zero and variance one). These errors have been corrected in the HTML and PDF versions of the Article.
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