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Proteins effect a number of biological functions, from cellular

signaling, organization, mobility, and transport to catalyzing

biochemical reactions and coordinating an immune response.

These varied functions are often dependent upon

macromolecular interactions, particularly with other proteins.

Small-scale studies in the scientific literature report protein–

protein interactions (PPIs), but slowly and with bias towards

well-studied proteins. In an era where genomic sequence is

readily available, deducing genotype–phenotype relationships

requires an understanding of protein connectivity at proteome-

scale. A proteome-scale map of the protein–protein interaction

network provides a global view of cellular organization and

function. Here, we discuss a summary of methods for building

proteome-scale interactome maps and the current status and

implications of mapping achievements. Not only do

interactome maps serve as a reference, detailing global cellular

function and organization patterns, but they can also reveal the

mechanisms altered by disease alleles, highlight the patterns of

interaction rewiring across evolution, and help pinpoint

biologically and therapeutically relevant proteins. Despite the

considerable strides made in proteome-wide mapping, several

technical challenges persist. Therefore, future considerations

that impact current mapping efforts are also discussed.
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Introduction
As the most important biological building blocks, proteins

mainly carry out their functions by interacting with other

biological macromolecules, including DNA, RNA, pro-

teins and small molecules such as lipids and metabolites.

Protein–protein interactions, in particular, are incredibly

diverse, as they execute a myriad of biological functions.

Generating a protein–protein interaction network map at

proteome-scale reveals the macromolecular connections

that underlie the biology of the cell [1]. Indeed, in order to

explore the link between genotype and phenotype and

deduce how genetic changes result in disease, an under-

standing of the cellular network of physical and functional

interactions involving proteins is critical [1–4]. As we look

to generate the richest and most complete network map

possible, we rely on the integration of experimentally

derived and computationally predicted interactions.

Characterization and application of existing networks

has proven useful and highlights the need for expanded

network information [5].

Experimental methods for building a
proteome-scale map of the interactome
network
There are a number of methods for mapping protein–

protein interactions. However, only a few methods are

amenable for high-throughput mapping. Recently, prote-

ome-scale interactome maps for human and a number of

model organisms have been generated using one of three

main techniques. Binary interactome network maps have

been generated using yeast two-hybrid (Y2H), and report

direct physical interactions. In contrast, co-complex asso-

ciations can be either direct or indirect protein–protein

interactions, and are detected using affinity purification

followed by mass spectrometry (AP-MS) or co-fraction-

ation with mass spectrometry (CO-FRAC) (Figure 1).

While all of these experimental methods can be adapted

to systematically survey the entire proteome, each tech-

nique has inherent benefits and limitations.

Binary interaction mapping by yeast two-hybrid (Y2H)

Binary mapping by Y2H detects direct physical interac-

tions between two proteins by the reconstitution of a

transcription factor that activates reporter gene expres-

sion and promotes yeast cell survival on appropriate

selective media (Figure 1a) [6]. Binary interactions iden-

tified using Y2H as the primary screening method are

validated by a number of orthogonal assays, and data from
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Schematic of systematic experimental methods for high-throughput proteome-scale mapping of protein–protein interactions. For each method

(left), network representation (middle) and principle (right) are depicted. (a) Binary mapping using yeast two-hybrid identifies direct physical

interactions between two proteins. (b) Co-complex mapping using AP-MS or co-fractionation with mass spectrometry identifies protein

associations, which may be either direct or indirect.
such assays indicate that pairs found by this method are of

comparable quality as gold standard literature datasets

[5,7]. A recent systematic binary mapping study assayed

pairs of proteins from a space of �13 000 � 13 000 human

open reading frames (ORFs) and identified

�14 000 protein–protein interactions (PPIs) among

�4300 proteins [8��]. Systematically generated binary

maps uniformly identify PPIs in the whole gene space,

avoiding sociological bias that may occur in small-scale

experiments or literature-curated interactome maps that

focus on well-studied genes [8��]. This screening method

has therefore proven to be a useful tool, enumerating

binary interactions not only for human, but for a number

of model organisms as well, including Saccharomyces cer-
evisiae [9–11], Schizosaccharomyces pombe [12], Escherichia
coli [13], Caenorhabditis elegans [14,15], and Arabidopsis
thaliana [16]. While this method is easily scaled and

relatively inexpensive, it may fail to capture interactions

between proteins which rely on intermediary or scaffold

proteins (such as those between protein complex sub-

units), those involving proteins from specific subcellular
Current Opinion in Structural Biology 2017, 44:201–210 
compartments (such as membrane proteins), or those

which require post-translational modifications [17]. More-

over, this assay requires proteins to be expressed at non-

endogenous levels in the yeast nucleus. Such technical

requirements may limit the detection of PPIs that require

specific protein expression levels (such as protein com-

plexes with strict stoichiometry or stability), or may

contribute to the detection of biophysical interactions

between proteins that are not endogenously co-expressed

or co-localized.

Affinity purification and mass spectrometry (AP-MS)

In interactome mapping by AP-MS, epitope tags are

fused to bait proteins, and proteins associated with the

bait proteins are purified and identified by mass spec-

trometry (Figure 1b, top). Two of the latest screening

efforts utilizing this method focused on expanding the

human interactome network map. The BioPlex dataset

reports �23 700 protein–protein associations (PPAs)

among �7600 proteins, using �2600 bait proteins over-

expressed in HEK293T cells [18��]. An alternative study,
www.sciencedirect.com
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QUBIC, utilized GFP-tagged baits that were incorpo-

rated into HeLa cell chromosomes and thus were

expressed at near-endogenous expression levels and pat-

terns to identify interactions. The QUBIC dataset

includes �28 500 PPAs among �5500 proteins, resulting

from the expression of �1100 bait proteins [19]. The

investigation of quantitative stoichiometry and protein

abundance in the QUBIC dataset suggested that stable

complexes are relatively rare, accounting for only 10% of

human interactome. Weak, substoichiometric interac-

tions were more critical for maintaining the connectivity

of the overall PPI network [19].

AP-MS is efficient in the identification of stably associ-

ated and relatively abundant proteins. In particular, PPAs

involved in large protein complexes are more likely to be

found by AP-MS, as cooperation among multiple proteins

may provide the needed structural stability for complexes

[11,20]. This method would thereby generate a dataset

that is complementary to those constructed using binary

PPI mapping methods. However, AP-MS is limited in its

ability to detect transient associations, low-abundance

complexes, and interactions occurring in particular cell

types [21]. In addition, PPAs identified by AP-MS indi-

cate only co-complex associations. For protein complexes

in which a mechanistic understanding of assembly is

critical, further testing must be done to determine which

of these are direct physical interactions.

Co-fractionation and mass spectrometry

In contrast to Y2H and AP-MS, interactome mapping by

co-fractionation does not require exogenously introduced

ORFs or protein tags (Figure 1b, bottom). Instead, chro-

matographic and other biochemical separation methods of

cell extracts are carried out to generate hundreds to

thousands of fractions that are analyzed by mass spec-

trometry. Protein associations are inferred by co-elution

profiles of proteins, as well as weighting from various

functional criteria such as co-expression, genetic interac-

tions, domain co-occurrence, and co-evolutionary rates.

Havugimana et al. were the first to use this method at

proteome-scale, and identified �14 000 associations

among �3000 human proteins for �600 protein com-

plexes [22�]. An additional effort published in 2016 from

the same research group, increased the size of the net-

work map, now composed of �28 000 PPAs between

�4500 proteins [23��]. The human interactome network

map derived from co-fractionation showed little evidence

for tissue specificity, as few cell type-specific proteins

were detected. Moreover, fewer interactions for low

abundance proteins were identified [23��], and rigorous

computational algorithms are required to reconstruct high

confidence co-complex associations. This inference of co-

complex association may not be free of sociological bias,

as it relies on the quality of previously generated large-

scale datasets to train the algorithm and infer the

interactions.
www.sciencedirect.com 
Regardless of the mapping strategy employed, protein–

protein interactome maps have relatively poor overlap.

This is true even when comparing maps generated with

the same assay. However, this can be put in perspective

when considering the many different technical parame-

ters that influence the detection of PPIs. The genes

queried, the strains or cell types used, and the presence

and orientation of proteins tags are all examples of the

many variables that impact the detection of PPIs [7,17].

Ultimately, the combination of maps generated with

different methods provides a more complete view of

interactome networks, since each method highlights a

different subset of the interactome.

In silico prediction of protein–protein
interactions
To fill in the gap between the low coverage of experi-

mentally determined interactome network maps and the

urgent need for more complete and detailed interactome

information, in silico prediction methods of protein–pro-

tein interactions have been developed. These facilitate

the prioritization of experimental efforts and further our

understanding of current biological questions.

Many types of information, such as phylogenetic profil-

ing, gene fusion, co-expression, conservation of gene

neighborhood, and gene ontology, can be used individu-

ally or together to predict protein–protein interactions

[24–29]. Rhodes et al. used a naive Bayes model that

combines information for ortholog interaction, co-expres-

sion, shared gene ontology terms, and enriched domain–

domain interaction pairs to predict novel interactions in

human [30]. Zhang et al. showed that 3D structural

information for protein complexes and protein monomers

can be very helpful in the prediction of PPIs, when

combined with non-structural-based methods [31]. With

the use of only protein sequence evolutionary coupling

information derived from carefully generated multiple

sequence alignments, interactions can be predicted with

high accuracy and at the resolution of single residues

[32��]. With the combination of 3D docking methods such

as HADCOCK, it is possible to acquire protein complex

models with even atomic resolution. Finally, new inter-

actions can also be predicted by an algorithm that is

purely based on the topology of current network itself,

without knowing any additional biological information

[33].

While all computational methods rely on different kinds

of experimental data, such as sequencing, structural, gene

expression, and PPI data, issues such as errors, biases,

incompleteness, and misinterpretation of experimental

data will influence computational prediction results. The

underlying assumptions of computational methods dic-

tate the power of prediction. For example, sequence or

structural similarities may not always reflect preservation

of biophysical interactions across species. Moreover,
Current Opinion in Structural Biology 2017, 44:201–210
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function-based clues may not necessarily lead to biophys-

ical interactions. General network patterns may not be

correct for PPI networks. Even if computational predic-

tions can enrich positive interactions many folds better

than random, they still suffer from a relatively high false

positive rate. The reliability of each method and its

predictions must ultimately be assessed by subsequent

validation experiments.

Both experimental and predicted PPIs are catalogued in a

number of databases and are available to the scientific

community. Some major repositories, and their character-

istics, are listed in Table 1. A more detailed description of

selectedrepositorieshasbeenprovidedby Zahiri etal. [28�].

Modelling PPIs
Since the functions of proteins rely on their unique and

dynamic three-dimensional structures in a physiological

environment, finer mapping of protein–protein interac-

tions is critical; incorporating structural information to

flesh out the molecular details of PPIs will allow us to

better understand fundamental cellular processes.

Experimentally derived structures of interacting proteins

provide the most detailed description of how PPIs are

formed, at times with atomic resolution. For example,

they can reveal detailed binding interface residue infor-

mation or can be used to calculate the affinity of the

interaction [34–37]. Such data can also further our under-

standing of how changes in a protein (e.g., mutations and

post-translational modifications) affect interaction or pro-

tein stability [38�,39,40]. Notably, detailed structures are

critical for drug design and virtual screening of small

molecule inhibitors, and serve as a basis for studying

the dynamic features of protein complexes, such as con-

formational changes and allosteric effects [41].
Table 1

Most widely used protein–protein interaction databases. The major 

provided

Name Characteristics 

BioGrid Curated protein and genetic interactions,

associations, and post-translational modi

major model organisms

IntAct PPIs derived from literature curation and 

individual user submissions

Interactome3D Structural annotation of PPIs for eighteen

STRING Known and predicted PPIs. Direct and in

associations with three-dimensional struc

Pathway commons Provides both pathways and interactions 

Mentha Aggregated data from PPI databases with

score that takes supporting evidences int
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The structures of interacting proteins can be deduced by

experimental techniques such as X-ray crystallography,

NMR spectroscopy, and cryo-electron microscopy. How-

ever, obtaining a high quality complex structure is still

very time consuming and labor intensive, and it is rarely

used in early stage PPI studies as a result. Considering the

size of even small interactomes (e.g., �18 000 predicted

total interactions in S. cerevisiae [11]), it would be nearly

impossible to experimentally solve all structures. Alter-

natively, PPI structures can be predicted by methods that

incorporate data such as existing PPIs, structure tem-

plates, and single protein structures [42��,43–45]. The

curation and integration of such data provides a vital

resource; an example of such an integral database is

Interactome3D, which provides detailed structural infor-

mation for �23 500 PPIs in eighteen organisms [42��].

Uses and implications of proteome-scale
interactome maps
Once constructed, macromolecular interaction network

maps are characterized to determine how reported inter-

actions affect the organization, dynamics, and functions of

a given biological system.

Exploration of disease mechanisms

In the era of genomic sequencing, more genetic muta-

tions have been identified than have been functionally

characterized. Although over 100 000 mutant alleles asso-

ciated with Mendelian disorders, complex diseases, and

cancer have been catalogued, causal relationships have

yet to be determined in many cases [2��,46,47]. It is

critical then to discriminate between disease-causing

and natural genomic variants, and to determine their

respective PPI patterns [2��,8��].

A proteome-scale map serves as a reference, allowing for

the enumeration of interactions for wild-type proteins.
features of each database, as well as a link to each resource, is

Website

 chemical

fications for

http://thebiogrid.org/

from http://www.ebi.ac.uk/intact/

 organisms http://interactome3d.irbbarcelona.org/

direct

tural annotation

http://string-db.org/

http://www.pathwaycommons.org/

 interaction

o account

http://mentha.uniroma2.it/
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Figure 2
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Examples of applications of proteome-scale interactome network maps. A schematic of a network shows proteins (or nodes, indicated as circles)

and biophysical interactions (or edges, shown as solid lines). (a) Study of disease mechanisms. Top panel: analyses of network perturbations.

Mutations can lead to complete loss of the gene product (node removal, illustrated in red) or loss of specific interactions (edge removal, indicated

with a dashed orange line). Middle panel: disease-associated genes tend to form clusters, or disease gene modules. Bottom panel: an

interspecies interactome network map indicates the interactions between proteins of a host and pathogen. (b) Investigation of mechanisms of

evolution. Top panel: networks are rewired over evolutionary periods of time. New genes may arise either by the traditional method of gene

duplication and diversification (pink) or de novo (purple), generating new edges in the PPI network. Bottom panel: possible conservation of

protein–protein interactions (represented by the dashed lines) between orthologs of different species.
Determining the loss or gain of key interactions (or edges)

of a particular mutant protein, relative to the unperturbed

protein, identifies the ‘edgotype.’ These changes in the

interaction profile of the mutant might contribute to a

resulting disease state, ultimately allowing for a link

between genotype and phenotype [3,4] (Figure 2a, top

panel). Analysis of binary interactions from the most

recent proteome-scale map of the human interactome

network highlights several examples of ‘edgetic’ alleles

(i.e., those which lose some, but not all, edges). For

example, Rolland et al. determined that R24H and

R24C mutations in CDK4, linked to melanoma, disrupt

binding to CDKN2C, while the common variants N41S

and S52N do not [8��]. Interactions corresponding to

functional relationships are more likely to be disrupted

by disease-associated mutations than by common var-

iants. An unbiased approach to interactome mapping
www.sciencedirect.com 
has the potential to link uncharacterized genetic muta-

tions to disease phenotypes through altered physical

interactions [2��].

A better understanding of disease mechanisms can also be

reached through the study of network topology, which

allows the identification of patterns in interactome net-

works. One approach, known as the disease module

hypothesis, is based on the observation that disease

proteins are not scattered randomly in the interactome,

but form topological modules where they tend to interact

more with each other than with proteins outside of this

neighborhood. These particularly well-connected sub-

graphs of proteins are called disease modules

(Figure 2a, middle panel) [1,48,49]. Based on this hypoth-

esis, Rolland et al. expanded the view of the functional

cancer landscape by demonstrating that known and
Current Opinion in Structural Biology 2017, 44:201–210
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candidate cancer gene products tend to be highly con-

nected in the interactome network [8��]. There is growing

interest for the disease module hypothesis, as it implies

that we can generate lists of genes that are potentially

enriched for new candidate disease genes. Those candi-

dates are prioritized based on the fact that the number of

edges separating the gene products within modules is on

average lower than for random sets of gene products

[1,50]. Moreover, Kitsak et al. recently showed that the

tissue specificity of many diseases can be explained by

the integrity of expression of the disease module, rather

than by the expression of genes carrying the disease-

associated mutation alone [51�].

Complementary to intraspecies resource maps, interspe-

cies maps of pathogen-host interactomes have been built

to study the global landscape of host perturbations by

pathogens (Figure 2a, bottom panel). One interactome

map published in 2012 illustrated the rewiring of the host

cell (Homo sapiens) network under viral perturbations

from four families of DNA tumor virus proteins [52].

Systematic analysis of host targets of viral proteins can

identify cancer genes with a success rate on par with

functional genomics and large-scale cataloguing of tumor

mutations [52].

Study of protein–protein interaction rewiring in evolution

To date, protein–protein interaction maps have been

completed for various model organisms, including S.
cerevisiae [9–11,53–55], S. pombe [12], A. thaliana [16],

Drosophila melanogaster [56] and C. elegans [14,15], among

others. Comparisons between these interactomes, with a

particular focus on orthologous proteins, allows for the

study of network evolution (Figure 2b, bottom panel),

and allows us to see changes beyond those in the genome.

Many studies have examined network evolution at vari-

ous scales, in both distantly and closely related species.

To study the conservation of PPI networks, Wan et al.
generated protein complex maps with a standardized

approach for nine species spanning a billion years of

evolutionary divergence [23��]. Most of the interacting

proteins were conserved across those species, and thus

over one million high-confidence co-complex associations

for �120 eukaryotes with sequenced genomes were pre-

dicted. Metazoan complexes, or ‘new’ complexes, tend to

be enriched for roles related to multicellularity, whereas

‘old’ complexes are involved in core biological processes.

Moreover, larger complexes have been shown to be more

evolutionarily conserved, while small complexes are more

functionally unannotated and recently emerged in verte-

brate evolution [22�,23��].

To determine whether proteins retain the ability to

interact over evolutionary distances, an interspecies inter-

actome map was constructed [57]. Biophysical interac-

tions between human and budding yeast proteins were
Current Opinion in Structural Biology 2017, 44:201–210 
identified and then functionally characterized. This

yeast–human inter-interactome map reveals that co-func-

tionality and binding ability are preserved. For example,

DNA repair proteins, human MLH1 and yeast Mlh1, are

both able to bind yeast Ntg2, suggesting that this ances-

tral interaction has been preserved despite differentiation

of the two species and their proteome. The construction

of inter-interactome network maps such as this permit the

examination of the relationship between conservation at

the level of sequence and three-dimensional structure

with functionality, and determine the effect of evolution

on biophysical and functional network coordination.

An interactome also evolves as it both gains and loses

interactions. A protein interactome map generated for A.
thaliana provides evidence of dynamic rewiring [16].

Paralogous pairs of proteins arising from gene duplication

events and sequence diversification (Figure 2b, top panel)

exhibited a range of interaction rewiring, measured as the

fraction of shared interactions, and therefore a range of

functional divergence. A recent study on a subset of

paralogous pairs in budding yeast showed surprising

results; instead of only providing robustness, gene dupli-

cation may increase mutational fragility in some cases.

Half of the paralogous pairs tested required each other’s

presence to maintain their interaction profile [58].

The birth of new interactions is of particular interest, and

a more recent question (Figure 2b, top panel). How do

new protein–protein interactions arise? Which mecha-

nisms might be used to introduce these new associations

in the normal cellular repertoire? It has been proposed

that non-functional interactions may represent one reser-

voir from which functional interactions may arise [57].

Additionally, the duplication and diversification of exist-

ing genes may result in the integration of new interactions

(Figure 2b, top panel). Alternatively, new interactions

may result from the de novo birth of genes. Open reading

frames, residing in non-genic regions of the genome and

showing evidence of transcription and translation, encode

short novel peptides. These so-called proto-genes, which

display intermediate features between non-genic

sequences and bona fide genes, offer adaptive potential

if their expression and interactions confer a fitness advan-

tage under adverse conditions [59�]. While proto-genes

have been identified in a number of organisms, how they

participate in and re-shape the cell’s protein–protein

interactions has yet to be determined at proteome-scale

[60,61�,62,63].

Considerations for future interactome
mapping efforts
Protein complexity

Protein interactome maps fail to consider the full com-

plexity of the human proteome, as generated by alterna-

tive splicing, post-translational modifications, somatic

hypermutation, and other such mechanisms
www.sciencedirect.com
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Figure 3
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Considerations for future interactome network mapping efforts. (a) Tissue-specific interactome network maps. Spatial, quantitative, and temporal

information will be integrated. (b) Interactome network maps including protein isoforms and post-translational modifications (PTMs). (c) Rewiring of

interactome networks during developmental stages. (d) Interactome network maps generated under specific conditions, such as induction of

stress.
(Figure 3b). For example, due to technical challenges and

incomplete isoform annotation, human interactome maps

utilize the reference isoform; this corresponds to either

the longest or most abundantly expressed form of the

protein, though this definition varies by database [64].

Only small-scale screening efforts have begun to consider

the effects of alternative splicing on protein-binding

ability. For example, Corominas et al. generated an iso-

form interactome network map by screening alternatively

spliced variants of autism spectrum disorders (ASD)

expressed in the brain [65]. Interestingly, half of the

interactions in this network involved splicing variants,

thereby emphasizing the importance of protein isoforms

in interactome networks. An expanded study by Yang

et al. was the first to examine isoforms across large

numbers of genes (�1500 human genes), including those

involved in Mendelian diseases [66��]. Isoforms for these

genes were cloned from five different tissues and

screened by Y2H against �15 000 human ORF clones

to determine protein interaction profiles. While some

interactions were shared, others were found to be
www.sciencedirect.com 
isoform-specific. The degree to which interactions are

shared may be an approximate measure of shared func-

tion, and may allow for the elucidation of redundancy in

protein interaction networks [58]. Post-translational mod-

ifications (PTMs) also contribute to protein complexity

and mediate conditional interactions; recent efforts to

identify PPIs that create or rely on PTMs have been

reviewed by Woodsmith and Stelzl [67]. More effort will

be required to better understand the degree to which

protein complexity affects the interactome of various

organisms.

Tissue specificity

Current protein interactome network maps provide a vast

overview of the biophysical interactions between pro-

teins. However, they often fail to incorporate or fully

explore tissue specificity. Indeed, in any given tissue or

cell type, only a portion of all possible PPIs will be

relevant. Incorporation of gene expression data, such as

those collected by the Genotype-Tissue Expression

(GTEx) Project, will permit the construction of tissue-
Current Opinion in Structural Biology 2017, 44:201–210
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specific subnetworks (Figure 3a). A study of tissue-spe-

cific exons by Ellis et al. determined that these regions

were likely to be flexible and form interaction surfaces

[68]. This systematic assessment of neural-regulated

exons provides evidence that alternatively spliced exons

rewire interactions to generate tissue-specific networks.

Interaction dynamics

Identification of PPIs by biophysical methods reveals

only qualitative information. For example, current inter-

actome maps generated by Y2H, AP-MS, or CO-FRAC

do not incorporate the dynamics of protein interaction

(Figure 3c,d). However, recent interest in quantitative

measures of PPI information has grown, spurring the

development of new experimental techniques, such as

several bimolecular complementation methods, proxim-

ity-ligation assays [69] and quantitative AP-MS [70].

Alternative methods such as LUMIER with BACON,

BRET, and FRET even allow for the determination of

interaction strength [69].

Closing remarks: growth and integration of
interactome data
The typical representation of the protein–protein inter-

actome map, that of ‘nodes’ and ‘edges’, is a simplified

network model. Sophisticated protein molecules become

non-differentiable nodes, and the details of protein inter-

action process degenerate into a simple line. Quantitative

and dynamic features, such as protein expression levels

and interaction strength, are not yet incorporated. How-

ever, even though the network model is simplified, it has

great value not only in integrating local PPI information

into a global picture, but also in providing an infrastruc-

ture where multi-layered information can be linked

together to unveil a more realistic description of the

protein interactome. Further efforts in interactome map-

ping, with integration of isoforms and protein variants, as

well as quantitative, spatial, and temporal information,

will permit a better understanding of a cell’s organization

and functioning, as well as disease mechanisms.
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