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Inducing effect on the percolation transition
in complex networks
Jin-Hua Zhao1, Hai-Jun Zhou1 & Yang-Yu Liu2,3

Percolation theory concerns the emergence of connected clusters that percolate through a

networked system. Previous studies ignored the effect that a node outside the percolating

cluster may actively induce its inside neighbours to exit the percolating cluster. Here we study

this inducing effect on the classical site percolation and K-core percolation, showing that the

inducing effect always causes a discontinuous percolation transition. We precisely predict

the percolation threshold and core size for uncorrelated random networks with arbitrary

degree distributions. For low-dimensional lattices the percolation threshold fluctuates

considerably over realizations, yet we can still predict the core size once the percolation

occurs. The core sizes of real-world networks can also be well predicted using degree

distribution as the only input. Our work therefore provides a theoretical framework for

quantitatively understanding discontinuous breakdown phenomena in various complex

systems.
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P
ercolation transition on complex networks occurs in a wide
range of natural, technological and socioeconomic
systems1–3. The emergence of macroscopic network

connectedness, due to either gradual addition or recursive
removal of nodes or links, can be related to many fundamental
network properties, for example, robustness and resilience4,5,
cascading failure3,6,7, epidemic or information spreading8–10

and structural controllability11,12. Particularly interesting are the
emergence of a giant connected component13–21, the K-core
(obtained by recursively removing nodes with degree less than
K)22–25, and the core (obtained by recursively removing nodes of
degree one and their neighbours)12,26,27.

These classical percolation processes are passive in the
sense that whether or not a node belongs to the percolating
cluster depends only on its number of links to the percolat-
ing cluster. However, in many physical or information systems,
each node has an intrinsic state and after a node updates its state,
it can actively induce its neighbours to update their states too.
One example is the frozen-core formation in Boolean satisfiability
problems28, where non-frozen nodes can induce its frozen
neighbours into the non-frozen state (the so-called whitening
process29–31). In the glassy dynamics of kinetically constrained
models, a spin in a certain state facilitates the flipping of its
neighbouring spins32. In inter-dependent networks, a collapsed
node of one network causes the failure of the connected
dependent node in the other network3,33, resulting in a damage
cascading process. The inducing effect can also be related to
information or opinion spreading, for example, an early adopter
of a new product or innovation might persuade his or her friends
to adopt either.

Despite its implications on a wide range of important
problems, the inducing effect on percolation transitions has not
been fully understood. In this work, we study the inducing effect
on the classical site percolation and K-core percolation in
complex networks. We analytically show that the inducing effect
always causes a discontinuous percolation transition, therefore
providing a new perspective on abrupt breakdown phenomena in
complex networked systems. Our analytical calculations are
confirmed by extensive numerical simulations.

Results
Description of the model. We assume each node of the network
has a binary internal state: protected or unprotected. We allow an
initial p fraction of nodes randomly chosen from the network to
be protected. If p¼ 1, all the nodes are initially protected. As time
evolves, a protected node spontaneously becomes unprotected if it
has less than K protected neighbours. (In case of K¼ 0, a pro-
tected node will never spontaneously become unprotected.)
A protected node with K or more protected neighbours will be
induced to the unprotected state if at least one of its unprotected
neighbours has less than K0 protected neighbours. (In case of
K0 ¼ 0 or 1, the inducing effect is absent and our model reduces to
the classical site percolation or K-core percolation.) Note that
once a node becomes unprotected it will remain unprotected.

We refer to the above-mentioned evolution process as the
(K, K0)-protected core percolation. The (K, K0)-protected core, or
simply, the protected core is the subnetwork formed by all the
surviving protected nodes and the links among them (see Fig. 1
for an example). We denote the total number of nodes in the
protected core as Np-core. We can prove that the protected core is
independent of the particular state evolution trajectory of the
nodes and hence is well defined (see Supplementary Note 1).

In the context of opinion spreading or viral marketing, the
(K, K0)-protected core percolation can be described as follows:
consider a population of users to adopt a new product (or idea,

opinion, innovation and so on). Initially there is a p fraction of
users in the ‘protected’ (or conservative) state and refuse to adopt
the new product. The other (1–p) fraction of users are in the
‘unprotected’ state, that is, they are early adopters. A conservative
user will automatically adopt the new product if he/she has less
than K conservative friends. An adopted user with less than K0

conservative friends will persuade all his or her conservative
friends to adopt the new product. Then the protected core, if
exists, can be viewed as the subnetwork of the most conservative
individuals, who will never adopt the new product.

Analytical approach. Consider a large uncorrelated random
network containing N nodes, with arbitrary degree distribution
P(k) and mean degree c ¼

P
k�0 kPðkÞ34,35. We assume that

if any node i is still in the protected state, its neighbours do not
mutually influence each other and therefore their states are
independently distributed. This is a slight extension of the Bethe–
Peierls approximation widely used in spin-glass theory and
statistical inference36. Note that a closely related approximation
in network science is the tree approximation5,14,34, which
assumes the neighbours of node i become disconnected if i is
removed from the network. Under our assumption of state
independence, we can calculate the normalized size np-core

(�Np-core/N) of the protected core as

np-core ¼ p
X
s�K

X
k�s

PðkÞCs
kð1� a�bÞsbk� s ; ð1Þ

with Cs
k � k ! =½s ! ðk� sÞ ! � being the binomial coefficient (see

Supplementary Note 2). The parameter a denotes the probability
that, starting from a node i that is still in the protected state, a
node j reached by following a randomly chosen link (i, j) is in the
unprotected state and having at most K0–1 protected neighbours
(including i). The parameter b is the probability that such a node
j is in the unprotected state but having at least K0 protected
neighbours. We further define g as the probability that such a
node j is in the protected state and having exactly K protected
neighbours. Note that if initially we randomly choose a finite
p fraction of nodes to be protected, then (1–p) fraction of the
nodes will be and remain unprotected. Let us define Z as the
probability that, starting from such an initially unprotected node
m, a node n reached by following a randomly chosen link (m, n)
will eventually be in the unprotected state even if the inducing
effect of node m is not considered.

Figure 1 | The (2,2)-protected core of a small network. The (2,2)-

protected core (magenta region) is contained in the core (blue), which is

then contained in the 2-core (cyan). Protected and unprotected nodes are

coloured in gray and white, respectively.
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Because of the inducing effect, each node j mediates strong
correlations among the states of its neighbouring nodes if it is in
the unprotected state. After a careful analysis of all the possible
microscopic inducing patterns following the theoretical method
of Zhou37,38, we obtain a set of self-consistent equations for the
probabilities a, b, g and Z:

a ¼ ð1� pÞ
XK 0 � 2

s¼0

X
k�sþ 1

QðkÞCs
k� 1ð1� ZÞsZk� 1� s

þ p
XK � 2

s¼0

X
k�sþ 1

Xminðs;K 0 � 2Þ

r¼0

QðkÞCs
k� 1Cr

s ðaþbÞk� 1� s

8<
:

�ð1� a�b� gÞrgs� r þ
X

s�K � 1

X
k�sþ 2

Xminðs;K 0 � 2Þ

r¼0

�QðkÞCs
k� 1Cr

s ðaþ bÞk� 1� s�bk� 1� s
h i

�ð1� a�b� gÞrgs� r

)
; ð2Þ

b ¼ ð1� pÞ
X

s�K 0 � 1

X
k�sþ 1

QðkÞCs
k� 1ð1� ZÞsZk� 1� s

þ p
XK � 2

s¼K 0 � 1

X
k�sþ 1

Xs

r¼K 0 � 1

QðkÞCs
k� 1Cr

s ðaþ bÞk� 1� s

(

�ð1� a� b� gÞrgs� r þ
X

s�maxðK;K 0 Þ � 1

X
k�sþ 2

Xs

r¼K 0 � 1

�QðkÞCs
k� 1Cr

s ðaþbÞk� 1� s�bk� 1� s
h i

�ð1� a�b� gÞrgs� r

)
; ð3Þ

g ¼ p
X
k�K

QðkÞCK � 1
k� 1 ð1� a�bÞK � 1bk�K ; ð4Þ

Z ¼ 1� pþ p
XK � 1

s¼0

X
k�sþ 1

QðkÞCs
k� 1ð1� a� bÞsðaþ bÞk� 1� s

(

þ
X
s�K

X
k�sþ 2

QðkÞCs
k� 1 ðaþbÞk� 1� s� bk� 1� s
h i

ð1� a� bÞs
)
; ð5Þ

where Q(k) � kP(k)/c is the degree distribution for the node at an
end of a randomly chosen link. These equations can be
understood as follows. The first term on the right hand side of
Equation (2) is the probability that a node j reached by following
a link (i, j) is initially unprotected and having at most K0–2
protected neighbours (excluding node i) without considering its
inducing effect. The other two terms in the right hand side of
Equation (2) yield the probability that an initially protected node
j at the end of a link (i, j) will either spontaneously transit to or be
induced to the unprotected state and, when it is still in the
protected state, at most K0–2 of its protected neighbours
(excluding node i) have more than K protected neighbours
themselves. The terms in Equations (3)–(5) can be understood
similarly (see Supplementary Note 2 for more explanations).

The above self-consistent equations can be solved using a
simple iterative scheme (see Supplementary Note 3). When

K, K0Z2, these equations always have a trivial solution
(a,b,g,Z)¼ (1,0,0,1), yielding no protected core (np-core¼ 0). This
solution is always locally stable, and it is the only solution if the
mean degree c of the network is small or the initial fraction p of
protected nodes is small (see Supplementary Note 4). As c (or p)
increases, another stable solution of Equations (2)–(5) appears at
the critical mean degree c¼ c* (or the critical fraction p¼ p*),
corresponding to the percolation transition. In the limiting cases
of KA{0,1}, Equations (2)–(5) also change from having only one
stable solution to having two distinctive stable solutions at certain
critical value c¼ c* or p¼ p* (see Supplementary Note 4).

The minimal inducing effect. The minimal inducing effect
on percolation transitions can be demonstrated by comparing
(0,1)- and (1,1)-protected core percolation transitions with
(0,2)- and (1,2)-protected core percolation transitions as we
tune the initial fraction of protected node p. Note that the (K,1)-
protected core percolation with KA{0,1} is essentially the classical
site percolation1,5,14, because a protected node will remain
protected if it has at least one protected neighbour and there is
no inducing effect at all. In this case, a giant connected
component of protected nodes gradually emerges in the
network as p exceeds p� ¼ 1=

P
k�1ðk� 1ÞQðkÞ

� �
(see Fig. 2). The

minimal inducing effect is naturally present in the (0,2)- and
(1,2)-protected core percolation problems, namely if an unpro-
tected node has only one protected neighbour, this neighbour will
be induced to the unprotected state. In this case our analytical
calculation shows that both the normalized size of the protected
core and that of its giant connected component will jump from
zero to a finite positive value at certain critical value p* (see
Supplementary Notes 4 and 5). For Erdös–Rényi (ER) random
networks39,40 with mean degree c¼ 10, this threshold fraction is
p*E0.44 (for K¼ 1) and p*E0.42 (for K¼ 0), which are much
larger than the threshold value p*¼ 0.1 of the classical continuous
site percolation transition (see Fig. 2). Note that in case K¼ 0,
a protected node will never spontaneously become unprotected,
hence the discontinuous (0,2)-protected core percolation transi-
tion is solely due to the inducing effect.
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Figure 2 | Size of giant connected component of protected nodes.

Symbols are simulation results on a single ER random network of

N¼ 106 nodes and mean degree c¼ 10, whereas the lines are theoretical

predictions at N¼N. The giant connected component of protected nodes

continuously emerges in the (0,1)- and (1,1)-protected core percolation

problems (without inducing effect), but it emerges discontinuously in the

(0,2)- and (1,2)-protected core percolation problems (with minimal

inducing effect).
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Inducing effect on K-core percolation. The inducing effect can
also be demonstrated by comparing the K-core percolation and
the (K, K0)-protected core percolation as we tune the mean degree
c. In the following discussions, we set p¼ 1 and focus on the
representative case of K0 ¼K (the results for po1 and 2rK0aK
are qualitatively the same). And we refer to (K, K)-protected core
simply as K-protected core.

We find that for any KZ2, as c reaches the critical value c*,
np-core jumps from zero to a finite value n�p-core (see
Supplementary Note 4), indicating a discontinuous percolation
transition. We also find that for any KZ2 and independent of
network types, np-core� n�p-core / ðc� c�Þ1=2 in the supercritical
regime where c–c*-0þ (see Supplementary Note 6). Such a
hybrid phase transition and the associated critical exponent 1/2
were also observed in K-core percolation and core percola-
tion12,22–24.

In the following, we study the discontinuous 2-protected core
percolation in a series of random networks with specific degree
distributions. We first consider the ER random network with
Poisson degree distribution P(k)¼ e� cck/k!. We find that the
discontinuous 2-protected core percolation transition occurs at
c¼ c*E3.92, with a jump of np-core from zero to n�p-core � 0:62
(see Fig. 3). Note that for ER random networks the classical 2-
core and core percolation transitions occur at c*¼ 1 and
c*¼ eE2.72, respectively, and they are both continuous12,24.
Hence, allowing unprotected nodes to induce other nodes not
only delays the occurrence of the percolation transition to a larger
value of c but also makes it discontinuous (see Fig. 4).

Scale-free (SF) networks characterized by a power-law degree
distribution PðkÞ 	 k� l with degree exponent l are ubiquitous
in real-world complex systems39. Interestingly, we find that for
purely scale-free networks with P(k)¼ k� l/z(l) and z(l) the
Riemann z function, the K-protected core does not exist for any
l42 (see Supplementary Note 7). If the smallest degree kminZK
and a fraction r of the links are randomly removed from the
purely SF network, then a discontinuous K-protected core
percolation transition will occur (see Supplementary Note 7).
For asymptotically SF networks generated by the static model
with PðkÞ 	 k� l for large k only41–43, the K-protected core

develops when the mean degree c exceeds a threshold value c*.
For this type of random networks with different values of c and l,
we compare the theoretical and simulation results and find that
they agree well with each other (see Fig. 3).

For random regular networks, all the nodes have the same
degree k0, and the K-protected core contains the whole network
when k0ZK. If a randomly chosen fraction r of the links
are removed, the degree distribution of the diluted network is
given by PðkÞ ¼ ½k0 ! =k ! ðk0 � kÞ ! �ð1� rÞkrk0�k with mean
degree c¼ (1–r)k0. We predict that n�p-core � 0:77 (for k0¼ 4)
and n�p-core � 0:71 (for k0¼ 6) at the 2-protected core percola-
tion transition, with c*E3.08 and c*E3.37, respectively. These
predictions are in full agreement with simulation results (see
Fig. 5).

We also study the 2-protected core percolation in diluted
D-dimensional hypercubic lattice and again find a discontinuous
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transition. Interestingly, in low dimensions the numerically
observed transition point c* is remarkably larger than the
theoretical prediction (see Figs 5 and 6). We find that this
difference is not a finite-size effect but intrinsic (it remains in the
N-N limit), and the difference decreases quickly as D increases.
The transition point c* fluctuates considerably for low dimensions
(especially for D¼ 2,3) and depends considerably on the system
size N (for Dr7, see Supplementary Note 8). Moreover, there is
no critical scaling behaviour in the supercritical regime (similar
absence of critical scaling was also observed in 4-core percolation
on D¼ 4 lattices44). Surprisingly, the value of np-core at and after
the percolation transition agrees well with our theoretical
prediction (see Fig. 5).

Finally, we apply our theory to a wide range of real-world
networks of different sizes and topologies, and find that for most of
these networks the normalized sizes of the 2-protected core can be
precisely predicted using the degree distribution as the only input
(see Supplementary Tables S1 and S2 and Supplementary Note 9).

Discussion
Inducing effect has an important role in many complex
networked systems. Yet, little was known about how it will affect
classical percolation transitions in complex networks. Here we
develop analytical tools to address this problem for arbitrary
network topologies. Our key finding, that the local inducing effect
causes discontinuous site percolation and K-core percolation (for
any KZ1), suggests a simple local mechanism to better under-
stand and ultimately predict many abrupt breakdown phenomena
observed in various systems, for example, the global failure of a
national-wide power grid, the sudden collapse of a governmental
system or a network of financial institutions.

The results presented here also raise a number of questions,
answers to which could further deepen our understanding of
complex networked systems. First of all, we can improve the local
inducing mechanism to be more realistic, for example, by
considering that the parameters K and K0 might be different for
different nodes, an unprotected node may only be able to induce
some particular neighbours (for example, in a directed network),
or an unprotected node may recover to the protected state with

certain rate and so on. Second, for low-dimensional lattice
systems, the lattice structures and the associated short loops cause
strong local and long-range correlations among the states of the
nodes, which should be properly considered in a future refined
theory, for example, by changing the form of Q(k) to include local
degree–degree correlations and by exactly computing the effects
of short loops up to certain length. Finally, an interesting
optimization problem consists of identifying a minimal set of
nodes such that perturbing these nodes to the unprotected state
will cause the protected core of the whole network to breakdown.
In the context of opinion dynamics or viral marketing, this
amounts to identifying a minimal set of users for targeted
advertisement so that we can dissolve the protected core and
eventually all the users will adopt the new opinion or product.
We hope our work will stimulate further research efforts on these
and other related interesting and challenging questions.
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simulation results to N¼N, and circles are analytical predictions of c* for

an infinite RR network with vertex degree k0¼ 2D. The differences between

the extrapolated simulation results and the theoretical predictions are due

to the ignorance of lattice structures in the theory.
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